Magnesium and Pain
Abstract
1. Introduction
2. Mechanism of Antinociceptive Action of Magnesium
3. Magnesium and Perioperative Pain
4. Other Acute and Chronic Pain
4.1. Neuropathic Pain
4.2. Diabetic Peripheral Neuropathy
4.3. PHN
4.4. Chemotherapy-Induced Peripheral Neuropathy
4.5. Fibromyalgia
4.6. Dysmenorrhea
4.7. Headache
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grew, N. Treatise of the Nature and Use of the Bitter Purging Salt Contain’d in Epsom, and Such Other Waters. 1697. Available online: http://tei.it.ox.ac.uk/tcp/Texts-HTML/free/A42/A42118.html (accessed on 15 September 2019).
- Banerjee, S.; Jones, S. Magnesium as an Alternative or Adjunct to Opioids for Migraine and Chronic Pain: A Review of the Clinical Effectiveness and Guidelines; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2017. [Google Scholar]
- Woolf, C.J.; Thompson, S.W. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991, 44, 293–299. [Google Scholar] [CrossRef]
- Paoletti, P.; Neyton, J. NMDA receptor subunits: Function and pharmacology. Curr. Opin. Pharmacol. 2007, 7, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J.; Salter, M.W. Neuronal plasticity: Increasing the gain in pain. Science 2000, 288, 1765–1769. [Google Scholar] [CrossRef] [PubMed]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Evidence for a central component of post-injury pain hypersensitivity. Nature 1983, 306, 686–688. [Google Scholar] [CrossRef]
- Woolf, C.J.; Chong, M.S. Preemptive analgesia—Treating postoperative pain by preventing the establishment of central sensitization. Anesth. Analg. 1993, 77, 362–379. [Google Scholar] [CrossRef]
- Pockett, S. Spinal cord synaptic plasticity and chronic pain. Anesth. Analg. 1995, 80, 173–179. [Google Scholar]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Menniti, F.S.; Traynelis, S.F. NMDA Receptors in the Central Nervous System. Methods Mol. Biol. 2017, 1677, 1–80. [Google Scholar]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef]
- Felsby, S.; Nielsen, J.; Arendt-Nielsen, L.; Jensen, T.S. NMDA receptor blockade in chronic neuropathic pain: A comparison of ketamine and magnesium chloride. Pain 1996, 64, 283–291. [Google Scholar] [CrossRef]
- Mayer, M.L.; Westbrook, G.L.; Guthrie, P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984, 309, 261–263. [Google Scholar] [CrossRef]
- Baranauskas, G.; Nistri, A. Sensitization of pain pathways in the spinal cord: Cellular mechanisms. Prog. Neurobiol. 1998, 54, 349–365. [Google Scholar] [CrossRef]
- Ma, Q.P.; Woolf, C.J. Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: Implications for the treatment of mechanical allodynia. Pain 1995, 61, 383–390. [Google Scholar] [CrossRef]
- Yaksh, T.L. Calcium channels as therapeutic targets in neuropathic pain. J. Pain 2006, 7, S13–S30. [Google Scholar] [CrossRef]
- Shafi, S.; Collinsworth, A.W.; Copeland, L.A.; Ogola, G.O.; Qiu, T.; Kouznetsova, M.; Liao, I.-C.; Mears, N.; Pham, A.T.; Wan, G.J.; et al. Association of Opioid-Related Adverse Drug Events With Clinical and Cost Outcomes Among Surgical Patients in a Large Integrated Health Care Delivery System. JAMA Surg. 2018, 153, 757–763. [Google Scholar] [CrossRef]
- Hauser, W.; Schug, S.; Furlan, A.D. The opioid epidemic and national guidelines for opioid therapy for chronic noncancer pain: A perspective from different continents. Pain Rep. 2017, 2, e599. [Google Scholar] [CrossRef]
- Mir, H.R.; Miller, A.N.; Obremskey, W.T.; Jahangir, A.A.; Hsu, J.R. Confronting the Opioid Crisis: Practical Pain Management and Strategies: AOA 2018 Critical Issues Symposium. J. Bone Jt. Surg. Am. 2019, 101, e126. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, K. Avoiding globalisation of the prescription opioid epidemic. Lancet 2017, 390, 437–439. [Google Scholar] [CrossRef]
- Quinlan, J.; Rann, S.; Bastable, R.; Levy, N. Perioperative opioid use and misuse. Clin. Med. 2019, 19, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Glare, P.; Aubrey, K.R.; Myles, P.S. Transition from acute to chronic pain after surgery. Lancet 2019, 393, 1537–1546. [Google Scholar] [CrossRef]
- Soave, P.M.; Conti, G.; Costa, R.; Arcangeli, A. Magnesium and anaesthesia. Curr. Drug Targets 2009, 10, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Abdulatif, M.; Ahmed, A.; Mukhtar, A.; Badawy, S. The effect of magnesium sulphate infusion on the incidence and severity of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia. Anaesthesia 2013, 68, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Czarnetzki, C.; Lysakowski, C.; Elia, N.; Tramer, M.R. Time course of rocuronium-induced neuromuscular block after pre-treatment with magnesium sulphate: A randomised study. Acta Anaesthesiol. Scand. 2010, 54, 299–306. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Na, H.S.; Jeon, Y.T.; Ro, Y.J.; Kim, C.S.; Do, S.H. I.V. infusion of magnesium sulphate during spinal anaesthesia improves postoperative analgesia. Br. J. Anaesth. 2010, 104, 89–93. [Google Scholar] [CrossRef]
- El Mourad, M.B.; Arafa, S.K. Effect of intravenous versus intraperitoneal magnesium sulfate on hemodynamic parameters and postoperative analgesia during laparoscopic sleeve gastrectomy-A prospective randomized study. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 242–247. [Google Scholar] [CrossRef]
- Jabbour, H.; Jabbour, K.; Abi Lutfallah, A.; Abou Zeid, H.; Nasser-Ayoub, E.; Abou Haidar, M.; Naccache, N. Magnesium and Ketamine Reduce Early Morphine Consumption After Open Bariatric Surgery: A Prospective Randomized Double-Blind Study. Obes. Surg. 2019, 30, 1452–1458. [Google Scholar] [CrossRef]
- Heydari, S.M.; Hashemi, S.J.; Pourali, S. The Comparison of Preventive Analgesic Effects of Ketamine, Paracetamol and Magnesium Sulfate on Postoperative Pain Control in Patients Undergoing Lower Limb Surgery: A Randomized Clinical Trial. Adv. Biomed. Res. 2017, 6, 134. [Google Scholar]
- Altiparmak, B.; Celebi, N.; Canbay, O.; Toker, M.K.; Kilicarslan, B.; Aypar, U. Effect of magnesium sulfate on anesthesia depth, awareness incidence, and postoperative pain scores in obstetric patients. A double-blind randomized controlled trial. Saudi Med. J. 2018, 39, 579–585. [Google Scholar] [CrossRef]
- Kizilcik, N.; Koner, O. Magnesium Sulfate Reduced Opioid Consumption in Obese Patients Undergoing Sleeve Gastrectomy: A Prospective, Randomized Clinical Trial. Obes. Surg. 2018, 28, 2783–2788. [Google Scholar] [CrossRef]
- Gucyetmez, B.; Atalan, H.K.; Aslan, S.; Yazar, S.; Polat, K.Y. Effects of Intraoperative Magnesium Sulfate Administration on Postoperative Tramadol Requirement in Liver Transplantation: A Prospective, Double-Blind Study. Transplant. Proc. 2016, 48, 2742–2746. [Google Scholar] [CrossRef]
- Jarahzadeh, M.H.; Harati, S.T.; Babaeizadeh, H.; Yasaei, E.; Bashar, F.R. The effect of intravenous magnesium sulfate infusion on reduction of pain after abdominal hysterectomy under general anesthesia: A double-blind, randomized clinical trial. Electron. Physician 2016, 8, 2602–2606. [Google Scholar] [CrossRef]
- Salah Abdelgalil, A.; Shoukry, A.A.; Kamel, M.A.; Heikal, A.M.Y.; Ahmed, N. A. Analgesic Potentials of Preoperative Oral Pregabalin, Intravenous Magnesium Sulfate, and their Combination in Acute Postthoracotomy Pain. Clin. J. Pain 2019, 35, 247–251. [Google Scholar] [CrossRef]
- Taheri, A.; Haryalchi, K.; Mansour Ghanaie, M.; Habibi Arejan, N. Effect of low-dose (single-dose) magnesium sulfate on postoperative analgesia in hysterectomy patients receiving balanced general anesthesia. Anesthesiol. Res. Pract. 2015, 2015, 306145. [Google Scholar] [CrossRef]
- Dube, L.; Granry, J.C. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: A review. Can. J. Anaesth. 2003, 50, 732–746. [Google Scholar] [CrossRef]
- Lysakowski, C.; Suppan, L.; Czarnetzki, C.; Tassonyi, E.; Tramer, M.R. Impact of the intubation model on the efficacy of rocuronium during rapid sequence intubation: Systematic review of randomized trials. Acta Anaesthesiol. Scand. 2007, 51, 848–857. [Google Scholar] [CrossRef]
- De Oliveira, G.S., Jr.; Castro-Alves, L.J.; Khan, J.H.; McCarthy, R.J. Perioperative systemic magnesium to minimize postoperative pain: A meta-analysis of randomized controlled trials. Anesthesiology 2013, 119, 178–190. [Google Scholar] [CrossRef]
- Albrecht, E.; Kirkham, K.R.; Liu, S.S.; Brull, R. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: A meta-analysis. Anaesthesia 2013, 68, 79–90. [Google Scholar] [CrossRef]
- Do, S.H. Magnesium: A versatile drug for anesthesiologists. Korean J. Anesthesiol. 2013, 65, 4–8. [Google Scholar] [CrossRef]
- Eizaga Rebollar, R.; Garcia Palacios, M.V.; Morales Guerrero, J.; Torres, L.M. Magnesium sulfate in pediatric anesthesia: The Super Adjuvant. Paediatr. Anaesth. 2017, 27, 480–489. [Google Scholar] [CrossRef]
- Guo, B.L.; Lin, Y.; Hu, W.; Zhen, C.X.; Bao-Cheng, Z.; Wu, H.H.; Kaye, A.D.; Duan, J.-H.; Qu, Y. Effects of Systemic Magnesium on Post-operative Analgesia: Is the Current Evidence Strong Enough? Pain Physician 2015, 18, 405–418. [Google Scholar]
- Peng, Y.N.; Sung, F.C.; Huang, M.L.; Lin, C.L.; Kao, C.H. The use of intravenous magnesium sulfate on postoperative analgesia in orthopedic surgery: A systematic review of randomized controlled trials. Medicine 2018, 97, e13583. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tao, R. The Impact of Magnesium Sulfate on Pain Control after Laparoscopic Cholecystectomy: A Meta-Analysis of Randomized Controlled Studies. Surg. Laparosc. Endosc. Percutaneous Tech. 2018, 28, 349–353. [Google Scholar] [CrossRef]
- Tramer, M.R.; Schneider, J.; Marti, R.A.; Rifat, K. Role of magnesium sulfate in postoperative analgesia. Anesthesiology 1996, 84, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Bujalska-Zadrozny, M.; Tatarkiewicz, J.; Kulik, K.; Filip, M.; Naruszewicz, M. Magnesium enhances opioid-induced analgesia—What we have learnt in the past decades? Eur. J. Pharm. Sci. 2017, 99, 113–127. [Google Scholar] [CrossRef]
- Ryu, J.H.; Sohn, I.S.; Do, S.H. Controlled hypotension for middle ear surgery: A comparison between remifentanil and magnesium sulphate. Br. J. Anaesth. 2009, 103, 490–495. [Google Scholar] [CrossRef]
- Song, J.W.; Lee, Y.W.; Yoon, K.B.; Park, S.J.; Shim, Y.H. Magnesium sulfate prevents remifentanil-induced postoperative hyperalgesia in patients undergoing thyroidectomy. Anesth. Analg. 2011, 113, 390–397. [Google Scholar] [CrossRef]
- Arcioni, R.; Palmisani, S.; Tigano, S.; Santorsola, C.; Sauli, V.; Romano, S.; Mercieri, M.; Masciangelo, R.; De Blasi, R.A.; Pinto, G. Combined intrathecal and epidural magnesium sulfate supplementation of spinal anesthesia to reduce post-operative analgesic requirements: A prospective, randomized, double-blind, controlled trial in patients undergoing major orthopedic surgery. Acta Anaesthesiol. Scand. 2007, 51, 482–489. [Google Scholar] [CrossRef]
- Kathuria, B.; Luthra, N.; Gupta, A.; Grewal, A.; Sood, D. Comparative efficacy of two different dosages of intrathecal magnesium sulphate supplementation in subarachnoid block. J. Clin. Diagn. Res. 2014, 8, GC01–GC05. [Google Scholar] [CrossRef]
- Ozalevli, M.; Cetin, T.O.; Unlugenc, H.; Guler, T.; Isik, G. The effect of adding intrathecal magnesium sulphate to bupivacaine-fentanyl spinal anaesthesia. Acta Anaesthesiol. Scand. 2005, 49, 1514–1519. [Google Scholar] [CrossRef]
- Turan, A.; Memis, D.; Karamanlioglu, B.; Guler, T.; Pamukcu, Z. Intravenous regional anesthesia using lidocaine and magnesium. Anesth. Analg. 2005, 100, 1189–1192. [Google Scholar] [CrossRef]
- Jerkovic, D.; Tadin, A.; Gavic, L.; Vladislavic, N.Z.; Grgic, N.; Macan, D. Effect of orally administered magnesium on postoperative pain level and trismus after surgical removal of the lower third molars: A randomized, double-blind, placebo-controlled trial. Clin. Oral. Investig. 2020. [Google Scholar] [CrossRef]
- McHardy, F.E.; Chung, F. Postoperative sore throat: Cause, prevention and treatment. Anaesthesia 1999, 54, 444–453. [Google Scholar] [CrossRef]
- Borazan, H.; Kececioglu, A.; Okesli, S.; Otelcioglu, S. Oral magnesium lozenge reduces postoperative sore throat: A randomized, prospective, placebo-controlled study. Anesthesiology 2012, 117, 512–518. [Google Scholar] [CrossRef]
- Teymourian, H.; Mohajerani, S.A.; Farahbod, A. Magnesium and Ketamine Gargle and Postoperative Sore Throat. Anesth. Pain Med. 2015, 5, e22367. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Das, A.; Nandy, S.; RoyBasunia, S.; Mitra, T.; Halder, P.S.; Chhaule, S.; Mandal, S.K. Postoperative Sore Throat Prevention in Ambulatory Surgery: A Comparison between Preoperative Aspirin and Magnesium Sulfate Gargle—A Prospective, Randomized, Double-blind Study. Anesth. Essays Res. 2017, 11, 94–100. [Google Scholar]
- Yadav, M.; Chalumuru, N.; Gopinath, R. Effect of magnesium sulfate nebulization on the incidence of postoperative sore throat. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 168–171. [Google Scholar] [CrossRef]
- Rajan, S.; Malayil, G.J.; Varghese, R.; Kumar, L. Comparison of Usefulness of Ketamine and Magnesium Sulfate Nebulizations for Attenuating Postoperative Sore Throat, Hoarseness of Voice, and Cough. Anesth. Essays Res. 2017, 11, 287–293. [Google Scholar] [CrossRef]
- Fregoso, G.; Wang, A.; Tseng, K.; Wang, J. Transition from Acute to Chronic Pain: Evaluating Risk for Chronic Postsurgical Pain. Pain Physician 2019, 22, 479–488. [Google Scholar]
- Oh, T.K.; Chung, S.H.; Park, J.; Shin, H.; Chang, C.B.; Kim, T.K.; Do, S.-H. Effects of Perioperative Magnesium Sulfate Administration on Postoperative Chronic Knee Pain in Patients Undergoing Total Knee Arthroplasty: A Retrospective Evaluation. J. Clin. Med. 2019, 8, 2231. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, Y.; Truini, T.; Attal, N.; Finnerup, N.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef]
- Farsi, L.; Afshari, K.; Keshavarz, M.; NaghibZadeh, M.; Memari, F.; Norouzi-Javidan, A. Postinjury treatment with magnesium sulfate attenuates neuropathic pains following spinal cord injury in male rats. Behav. Pharmacol. 2015, 26, 315–320. [Google Scholar] [CrossRef]
- Begon, S.; Pickering, G.; Eschalier, A.; Dubray, C. Magnesium and MK-801 have a similar effect in two experimental models of neuropathic pain. Brain Res. 2000, 887, 436–439. [Google Scholar] [CrossRef]
- Xiao, W.H.; Bennett, G.J. Magnesium suppresses neuropathic pain responses in rats via a spinal site of action. Brain Res. 1994, 666, 168–172. [Google Scholar] [CrossRef]
- Yousef, A.A.; Al-deeb, A.E. A double-blinded randomised controlled study of the value of sequential intravenous and oral magnesium therapy in patients with chronic low back pain with a neuropathic component. Anaesthesia 2013, 68, 260–266. [Google Scholar] [CrossRef]
- Farsi, L.; Naghib Zadeh, M.; Afshari, K.; Norouzi-Javidan, A.; Ghajarzadeh, M.; Naghshband, Z.; Keshavarz, M. Effects of combining methylprednisolone with magnesium sulfate on neuropathic pain and functional recovery following spinal cord injury in male rats. Acta Med. Iran. 2015, 53, 149–157. [Google Scholar] [PubMed]
- Crosby, V.; Wilcock, A.; Corcoran, R. The safety and efficacy of a single dose (500 mg or 1 g) of intravenous magnesium sulfate in neuropathic pain poorly responsive to strong opioid analgesics in patients with cancer. J. Pain Symptom Manag. 2000, 19, 35–39. [Google Scholar] [CrossRef]
- Rondon, L.J.; Privat, A.M.; Daulhac, L.; Davin, N.; Mazur, A.; Fialip, J.; Eschalier, A.; Courteix, C. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J. Physiol. 2010, 588, 4205–4215. [Google Scholar] [CrossRef] [PubMed]
- Ramadass, S.; Basu, S.; Srinivasan, A.R. SERUM magnesium levels as an indicator of status of Diabetes Mellitus type 2. Diabetes Metab. Syndr. 2015, 9, 42–45. [Google Scholar] [CrossRef]
- Arpaci, D.; Tocoglu, A.G.; Ergenc, H.; Korkmaz, S.; Ucar, A.; Tamer, A. Associations of serum Magnesium levels with diabetes mellitus and diabetic complications. Hippokratia 2015, 19, 153–157. [Google Scholar]
- Siddiqui, K.; Bawazeer, N.; Joy, S.S. Variation in macro and trace elements in progression of type 2 diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef]
- Joy, S.S.; George, T.P.; Siddiqui, K. Low magnesium level as an indicator of poor glycemic control in type 2 diabetic patients with complications. Diabetes Metab. Syndr. 2019, 13, 1303–1307. [Google Scholar] [CrossRef]
- Migdalis, I.N.; Xenos, K.; Chairopoulos, K.; Varvarigos, N.; Leontiades, E.; Karmaniolas, K. Ca(2+)-Mg(2+)-ATPase activity and ionized calcium in Type 2 diabetic patients with neuropathy. Diabetes Res. Clin. Pract. 2000, 49, 113–118. [Google Scholar] [CrossRef]
- Zhang, Q.; Ji, L.; Zheng, H.; Li, Q.; Xiong, Q.; Sun, W.; Zhu, X.; Li, Y.; Lu, B.; Liu, X.-X.; et al. Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2018, 146, 1–7. [Google Scholar] [CrossRef]
- Hasanein, P.; Parviz, M.; Keshavarz, M.; Javanmardi, K.; Mansoori, M.; Soltani, N. Oral magnesium administration prevents thermal hyperalgesia induced by diabetes in rats. Diabetes Res. Clin. Pract. 2006, 73, 17–22. [Google Scholar] [CrossRef]
- Hosseini, A.; Abdollahi, M.; Hassanzadeh, G.; Rezayat, M.; Hassani, S.; Pourkhalili, N.; Tabrizian, K.; Ahmad, T.K.; Beyer, C.; Sharifzadeh, M. Protective effect of magnesium-25 carrying porphyrin-fullerene nanoparticles on degeneration of dorsal root ganglion neurons and motor function in experimental diabetic neuropathy. Basic Clin. Pharmacol. Toxicol. 2011, 109, 381–386. [Google Scholar] [CrossRef]
- Hosseini, A.; Sharifzadeh, M.; Rezayat, S.M.; Hassanzadeh, G.; Hassani, S.; Baeeri, M.; Shetab-Bushehri, V.; A Kuznetsov, D.; Abdollahi, M. Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy. Int. J. Nanomed. 2010, 5, 517–523. [Google Scholar]
- Anju, M.; Chacko, L.; Chettupalli, Y.; Maiya, A.G.; Saleena Ummer, V. Effect of Low Level Laser Therapy on serum vitamin D and magnesium levels in patients with diabetic peripheral neuropathy—A pilot study. Diabetes Metab. Syndr. 2019, 13, 1087–1091. [Google Scholar] [CrossRef]
- Mallick-Searle, T.; Snodgrass, B.; Brant, J.M. Postherpetic neuralgia: Epidemiology, pathophysiology, and pain management pharmacology. J. Multidiscip. Healthc. 2016, 9, 447–454. [Google Scholar] [CrossRef]
- Saguil, A.; Kane, S.; Mercado, M.; Lauters, R. Herpes Zoster and Postherpetic Neuralgia: Prevention and Management. Am. Fam. Physician 2017, 96, 656–663. [Google Scholar]
- Yu, H.K.; Lee, J.H.; Cho, S.H.; Kim, Y.I. Relief of postherpetic neuralgia with transforaminal epidural injection of magnesium -a case report. Korean J. Pain 2011, 24, 53–56. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, P.B.; Oh, T.K. Is magnesium sulfate effective for pain in chronic postherpetic neuralgia patients comparing with ketamine infusion therapy? J. Clin. Anesth. 2015, 27, 296–300. [Google Scholar] [CrossRef]
- Song, D.; He, A.; Xu, R.; Xiu, X.; Wei, Y. Efficacy of Pain Relief in Different Postherpetic Neuralgia Therapies: A Network Meta-Analysis. Pain Physician 2018, 21, 19–32. [Google Scholar]
- Wolf, S.; Barton, D.; Kottschade, L.; Grothey, A.; Loprinzi, C. Chemotherapy-induced peripheral neuropathy: Prevention and treatment strategies. Eur. J. Cancer 2008, 44, 1507–1515. [Google Scholar] [CrossRef]
- Gamelin, L.; Boisdron-Celle, M.; Delva, R.; Guerin-Meyer, V.; Ifrah, N.; Morel, A.; Gamelin, E. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: A retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin. Cancer Res. 2004, 10, 4055–4061. [Google Scholar] [CrossRef]
- Grothey, A.; Nikcevich, D.A.; Sloan, J.A.; Kugler, J.W.; Silberstein, P.T.; Dentchev, T.; Wender, D.B.; Novotny, P.J.; Chitaley, U.; Alberts, S.R.; et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J. Clin. Oncol. 2011, 29, 421–427. [Google Scholar] [CrossRef]
- Knijn, N.; Tol, J.; Koopman, M.; Werter, M.J.; Imholz, A.L.; Valster, F.A.; Mol, L.; Vincent, A.; Teerenstra, S.; Punt, C. The effect of prophylactic calcium and magnesium infusions on the incidence of neurotoxicity and clinical outcome of oxaliplatin-based systemic treatment in advanced colorectal cancer patients. Eur. J. Cancer 2011, 47, 369–374. [Google Scholar] [CrossRef]
- Pachman, D.R.; Ruddy, K.; Sangaralingham, L.R.; Grothey, A.; Shah, N.D.; Beutler, A.S.; Hubbard, J.M.; Loprinzi, C.L. Calcium and Magnesium Use for Oxaliplatin-Induced Neuropathy: A Case Study to Assess How Quickly Evidence Translates Into Practice. J. Natl. Compr. Cancer Netw. 2015, 13, 1097–1101. [Google Scholar] [CrossRef][Green Version]
- Ishibashi, K.; Okada, N.; Miyazaki, T.; Sano, M.; Ishida, H. Effect of calcium and magnesium on neurotoxicity and blood platinum concentrations in patients receiving mFOLFOX6 therapy: A prospective randomized study. Int. J. Clin. Oncol. 2010, 15, 82–87. [Google Scholar] [CrossRef]
- Chay, W.Y.; Tan, S.H.; Lo, Y.L.; Ong, S.Y.; Ng, H.C.; Gao, F.; Koo, W.; Choo, S. Use of calcium and magnesium infusions in prevention of oxaliplatin induced sensory neuropathy. Asia Pac. J. Clin. Oncol. 2010, 6, 270–277. [Google Scholar] [CrossRef]
- Jordan, B.; Jahn, F.; Beckmann, J.; Unverzagt, S.; Muller-Tidow, C.; Jordan, K. Calcium and Magnesium Infusions for the Prevention of Oxaliplatin-Induced Peripheral Neurotoxicity: A Systematic Review. Oncology 2016, 90, 299–306. [Google Scholar] [CrossRef]
- Wen, F.; Zhou, Y.; Wang, W.; Hu, Q.C.; Liu, Y.T.; Zhang, P.F.; Du, Z.D.; Dai, J.; Li, Q. Ca/Mg infusions for the prevention of oxaliplatin-related neurotoxicity in patients with colorectal cancer: A meta-analysis. Ann. Oncol. 2013, 24, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ouyang, J.; He, Z.; Zhang, S. Infusion of calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in colorectal cancer: A systematic review and meta-analysis. Eur. J. Cancer 2012, 48, 1791–1798. [Google Scholar] [CrossRef]
- Okifuji, A.; Gao, J.; Bokat, C.; Hare, B.D. Management of fibromyalgia syndrome in 2016. Pain Manag. 2016, 6, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Sendur, O.F.; Tastaban, E.; Turan, Y.; Ulman, C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatol. Int. 2008, 28, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, K.M.; Lee, D.J.; Kim, B.T.; Park, S.B.; Cho, D.Y.; Suh, C.-H.; Kim, H.-A.; Park, R.-W.; Joo, N.-S. Women with fibromyalgia have lower levels of calcium, magnesium, iron and manganese in hair mineral analysis. J. Korean Med. Sci. 2011, 26, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Andretta, A.; Dias Batista, E.; Madalozzo Schieferdecker, M.E.; Rasmussen Petterle, R.; Boguszewski, C.L.; Dos Santos Paiva, E. Relation between magnesium and calcium and parameters of pain, quality of life and depression in women with fibromyalgia. Adv. Rheumatol. 2019, 59, 55. [Google Scholar] [CrossRef] [PubMed]
- Weglicki, W.B.; Mak, I.T.; Kramer, J.H.; Dickens, B.F.; Cassidy, M.M.; Stafford, R.E.; Phillips, M.S. Role of free radicals and substance P in magnesium deficiency. Cardiovasc. Res. 1996, 31, 677–682. [Google Scholar] [CrossRef]
- Becker, S.; Schweinhardt, P. Dysfunctional neurotransmitter systems in fibromyalgia, their role in central stress circuitry and pharmacological actions on these systems. Pain Res. Treat. 2012, 2012, 741746. [Google Scholar] [CrossRef]
- Weglicki, W.B.; Phillips, T.M. Pathobiology of magnesium deficiency: A cytokine/neurogenic inflammation hypothesis. Am. J. Physiol. 1992, 263, R734–R737. [Google Scholar] [CrossRef]
- Engen, D.J.; McAllister, S.J.; Whipple, M.O.; Cha, S.S.; Dion, L.J.; Vincent, A.; Bauer, B.A.; Wahner-Roedler, D.L. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: A feasibility study. J. Integr. Med. 2015, 13, 306–313. [Google Scholar] [CrossRef]
- Bagis, S.; Karabiber, M.; As, I.; Tamer, L.; Erdogan, C.; Atalay, A. Is magnesium citrate treatment effective on pain, clinical parameters and functional status in patients with fibromyalgia? Rheumatol. Int. 2013, 33, 167–172. [Google Scholar] [CrossRef] [PubMed]
- French, L. Dysmenorrhea. Am. Fam. Physician 2005, 71, 285–291. [Google Scholar]
- Chhabra, S.; Gokhake, S.; Yadav, S. Primary dysmenorrhea and serum magnesium in young girls a pilot study. Nessa J. Gynecol. 2017, 1, 1–9. [Google Scholar]
- Yakubova, O. Juvenile dysmenorrhea associated with hypomagnesemia and connective tissue dysplasia. Med. Health Sci. J. 2012, 11, 85–88. [Google Scholar] [CrossRef]
- Pattanittum, P.; Kunyanone, N.; Brown, J.; Sangkomkamhang, U.S.; Barnes, J.; Seyfoddin, V.; Marjoribanks, J. Dietary supplements for dysmenorrhoea. Cochrane Database Syst. Rev. 2016, 3, CD002124. [Google Scholar] [CrossRef] [PubMed]
- Fontana-Klaiber, H.; Hogg, B. Therapeutic effects of magnesium in dysmenorrhea. Schweiz. Rundsch. Med. Prax. 1990, 79, 491–494. [Google Scholar] [PubMed]
- Seifert, B.; Wagler, P.; Dartsch, S.; Schmidt, U.; Nieder, J. Magnesium—A new therapeutic alternative in primary dysmenorrhea. Zent. Gynakol. 1989, 111, 755–760. [Google Scholar]
- Arrowsmith, S.; Neilson, J.; Wray, S. The combination tocolytic effect of magnesium sulfate and an oxytocin receptor antagonist in myometrium from singleton and twin pregnancies. Am. J. Obstet. Gynecol. 2016, 215, 789, e1–e9. [Google Scholar] [CrossRef]
- Jung, E.J.; Byun, J.M.; Kim, Y.N.; Lee, K.B.; Sung, M.S.; Kim, K.T.; Shin, J.B.; Jeong, D.H. Antenatal magnesium sulfate for both tocolysis and fetal neuroprotection in premature rupture of the membranes before 32 weeks’ gestation. J. Matern. Fetal Neonatal Med. 2018, 31, 1431–1441. [Google Scholar] [CrossRef]
- Mauskop, A.; Altura, B.T.; Cracco, R.Q.; Altura, B.M. Intravenous magnesium sulfate rapidly alleviates headaches of various types. Headache 1996, 36, 154–160. [Google Scholar] [CrossRef]
- Dolati, S.; Rikhtegar, R.; Mehdizadeh, A.; Yousefi, M. The Role of Magnesium in Pathophysiology and Migraine Treatment. Biol. Trace Elem Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Sun-Edelstein, C.; Mauskop, A. Role of magnesium in the pathogenesis and treatment of migraine. Expert Rev. Neurother. 2009, 9, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Gallai, V.; Sarchielli, P.; Morucci, P.; Abbritti, G. Red blood cell magnesium levels in migraine patients. Cephalalgia 1993, 13, 94–98, discussion 73. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Millot, J.M.; Sebille, S.; Delabroise, A.M.; Thomas, E.; Manfait, M.; Arnaud, M.J. Free and total magnesium in lymphocytes of migraine patients—Effect of magnesium-rich mineral water intake. Clin. Chim. Acta 2000, 295, 63–75. [Google Scholar] [CrossRef]
- Assarzadegan, F.; Asgarzadeh, S.; Hatamabadi, H.R.; Shahrami, A.; Tabatabaey, A.; Asgarzadeh, M. Serum concentration of magnesium as an independent risk factor in migraine attacks: A matched case-control study and review of the literature. Int. Clin. Psychopharmacol. 2016, 31, 287–292. [Google Scholar] [CrossRef]
- Baratloo, A.; Mirbaha, S.; Delavar Kasmaei, H.; Payandemehr, P.; Elmaraezy, A.; Negida, A. Intravenous caffeine citrate vs. magnesium sulfate for reducing pain in patients with acute migraine headache; a prospective quasi-experimental study. Korean J. Pain 2017, 30, 176–182. [Google Scholar] [CrossRef]
- Taubert, K. Magnesium in migraine. Results of a multicenter pilot study. Fortschr. Med. 1994, 112, 328–330. [Google Scholar]
- Peikert, A.; Wilimzig, C.; Kohne-Volland, R. Prophylaxis of migraine with oral magnesium: Results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalalgia 1996, 16, 257–263. [Google Scholar] [CrossRef]
- Koseoglu, E.; Talaslioglu, A.; Gonul, A.S.; Kula, M. The effects of magnesium prophylaxis in migraine without aura. Magnes Res. 2008, 21, 101–108. [Google Scholar]
- Pfaffenrath, V.; Wessely, P.; Meyer, C.; Isler, H.R.; Evers, S.; Grotemeyer, K.H.; Taneri, Z.; Soyka, D.; G”Bel, H.; Fischer, M.; et al. Magnesium in the prophylaxis of migraine--a double-blind placebo-controlled study. Cephalalgia 1996, 16, 436–440. [Google Scholar] [CrossRef]
- Altura, B.M.; Altura, B.T. Tension headaches and muscle tension: Is there a role for magnesium? Med. Hypotheses 2001, 57, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Mishima, K.; Takeshima, T.; Shimomura, T.; Okada, H.; Kitano, A.; Takahashi, K.; Nakashima, K. Platelet ionized magnesium, cyclic AMP, and cyclic GMP levels in migraine and tension-type headache. Headache 1997, 37, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Sarchielli, P.; Coata, G.; Firenze, C.; Morucci, P.; Abbritti, G.; Gallai, V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia 1992, 12, 21–27. [Google Scholar] [CrossRef]
- Grazzi, L.; Andrasik, F.; Usai, S.; Bussone, G. Magnesium as a treatment for paediatric tension-type headache: A clinical replication series. Neurol. Sci. 2005, 25, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Grazzi, L.; Andrasik, F.; Usai, S.; Bussone, G. Magnesium as a preventive treatment for paediatric episodic tension-type headache: Results at 1-year follow-up. Neurol. Sci. 2007, 28, 148–150. [Google Scholar] [CrossRef]
- Li, Y.; Yue, J.; Yang, C. Unraveling the role of Mg(++) in osteoarthritis. Life Sci. 2016, 147, 24–29. [Google Scholar] [CrossRef]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef]
- Severino, P.; Netti, L.; Mariani, M.V.; Maraone, A.; D’Amato, A.; Scarpati, R.; Infusino, F.; Pucci, M.; LaValle, C.; Maestrini, V.; et al. Prevention of Cardiovascular Disease: Screening for Magnesium Deficiency. Cardiol. Res. Pract. 2019, 2019, 4874921. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.-J.; Na, H.-S.; Do, S.-H. Magnesium and Pain. Nutrients 2020, 12, 2184. https://doi.org/10.3390/nu12082184
Shin H-J, Na H-S, Do S-H. Magnesium and Pain. Nutrients. 2020; 12(8):2184. https://doi.org/10.3390/nu12082184
Chicago/Turabian StyleShin, Hyun-Jung, Hyo-Seok Na, and Sang-Hwan Do. 2020. "Magnesium and Pain" Nutrients 12, no. 8: 2184. https://doi.org/10.3390/nu12082184
APA StyleShin, H.-J., Na, H.-S., & Do, S.-H. (2020). Magnesium and Pain. Nutrients, 12(8), 2184. https://doi.org/10.3390/nu12082184