Magnesium and Pain
Abstract
:1. Introduction
2. Mechanism of Antinociceptive Action of Magnesium
3. Magnesium and Perioperative Pain
4. Other Acute and Chronic Pain
4.1. Neuropathic Pain
4.2. Diabetic Peripheral Neuropathy
4.3. PHN
4.4. Chemotherapy-Induced Peripheral Neuropathy
4.5. Fibromyalgia
4.6. Dysmenorrhea
4.7. Headache
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grew, N. Treatise of the Nature and Use of the Bitter Purging Salt Contain’d in Epsom, and Such Other Waters. 1697. Available online: http://tei.it.ox.ac.uk/tcp/Texts-HTML/free/A42/A42118.html (accessed on 15 September 2019).
- Banerjee, S.; Jones, S. Magnesium as an Alternative or Adjunct to Opioids for Migraine and Chronic Pain: A Review of the Clinical Effectiveness and Guidelines; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2017. [Google Scholar]
- Woolf, C.J.; Thompson, S.W. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991, 44, 293–299. [Google Scholar] [CrossRef]
- Paoletti, P.; Neyton, J. NMDA receptor subunits: Function and pharmacology. Curr. Opin. Pharmacol. 2007, 7, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolf, C.J.; Salter, M.W. Neuronal plasticity: Increasing the gain in pain. Science 2000, 288, 1765–1769. [Google Scholar] [CrossRef] [PubMed]
- Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolf, C.J. Evidence for a central component of post-injury pain hypersensitivity. Nature 1983, 306, 686–688. [Google Scholar] [CrossRef]
- Woolf, C.J.; Chong, M.S. Preemptive analgesia—Treating postoperative pain by preventing the establishment of central sensitization. Anesth. Analg. 1993, 77, 362–379. [Google Scholar] [CrossRef]
- Pockett, S. Spinal cord synaptic plasticity and chronic pain. Anesth. Analg. 1995, 80, 173–179. [Google Scholar]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Menniti, F.S.; Traynelis, S.F. NMDA Receptors in the Central Nervous System. Methods Mol. Biol. 2017, 1677, 1–80. [Google Scholar]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef]
- Felsby, S.; Nielsen, J.; Arendt-Nielsen, L.; Jensen, T.S. NMDA receptor blockade in chronic neuropathic pain: A comparison of ketamine and magnesium chloride. Pain 1996, 64, 283–291. [Google Scholar] [CrossRef]
- Mayer, M.L.; Westbrook, G.L.; Guthrie, P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984, 309, 261–263. [Google Scholar] [CrossRef]
- Baranauskas, G.; Nistri, A. Sensitization of pain pathways in the spinal cord: Cellular mechanisms. Prog. Neurobiol. 1998, 54, 349–365. [Google Scholar] [CrossRef]
- Ma, Q.P.; Woolf, C.J. Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: Implications for the treatment of mechanical allodynia. Pain 1995, 61, 383–390. [Google Scholar] [CrossRef]
- Yaksh, T.L. Calcium channels as therapeutic targets in neuropathic pain. J. Pain 2006, 7, S13–S30. [Google Scholar] [CrossRef]
- Shafi, S.; Collinsworth, A.W.; Copeland, L.A.; Ogola, G.O.; Qiu, T.; Kouznetsova, M.; Liao, I.-C.; Mears, N.; Pham, A.T.; Wan, G.J.; et al. Association of Opioid-Related Adverse Drug Events With Clinical and Cost Outcomes Among Surgical Patients in a Large Integrated Health Care Delivery System. JAMA Surg. 2018, 153, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Hauser, W.; Schug, S.; Furlan, A.D. The opioid epidemic and national guidelines for opioid therapy for chronic noncancer pain: A perspective from different continents. Pain Rep. 2017, 2, e599. [Google Scholar] [CrossRef]
- Mir, H.R.; Miller, A.N.; Obremskey, W.T.; Jahangir, A.A.; Hsu, J.R. Confronting the Opioid Crisis: Practical Pain Management and Strategies: AOA 2018 Critical Issues Symposium. J. Bone Jt. Surg. Am. 2019, 101, e126. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, K. Avoiding globalisation of the prescription opioid epidemic. Lancet 2017, 390, 437–439. [Google Scholar] [CrossRef]
- Quinlan, J.; Rann, S.; Bastable, R.; Levy, N. Perioperative opioid use and misuse. Clin. Med. 2019, 19, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Glare, P.; Aubrey, K.R.; Myles, P.S. Transition from acute to chronic pain after surgery. Lancet 2019, 393, 1537–1546. [Google Scholar] [CrossRef]
- Soave, P.M.; Conti, G.; Costa, R.; Arcangeli, A. Magnesium and anaesthesia. Curr. Drug Targets 2009, 10, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Abdulatif, M.; Ahmed, A.; Mukhtar, A.; Badawy, S. The effect of magnesium sulphate infusion on the incidence and severity of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia. Anaesthesia 2013, 68, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Czarnetzki, C.; Lysakowski, C.; Elia, N.; Tramer, M.R. Time course of rocuronium-induced neuromuscular block after pre-treatment with magnesium sulphate: A randomised study. Acta Anaesthesiol. Scand. 2010, 54, 299–306. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Na, H.S.; Jeon, Y.T.; Ro, Y.J.; Kim, C.S.; Do, S.H. I.V. infusion of magnesium sulphate during spinal anaesthesia improves postoperative analgesia. Br. J. Anaesth. 2010, 104, 89–93. [Google Scholar] [CrossRef] [Green Version]
- El Mourad, M.B.; Arafa, S.K. Effect of intravenous versus intraperitoneal magnesium sulfate on hemodynamic parameters and postoperative analgesia during laparoscopic sleeve gastrectomy-A prospective randomized study. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 242–247. [Google Scholar] [CrossRef]
- Jabbour, H.; Jabbour, K.; Abi Lutfallah, A.; Abou Zeid, H.; Nasser-Ayoub, E.; Abou Haidar, M.; Naccache, N. Magnesium and Ketamine Reduce Early Morphine Consumption After Open Bariatric Surgery: A Prospective Randomized Double-Blind Study. Obes. Surg. 2019, 30, 1452–1458. [Google Scholar] [CrossRef]
- Heydari, S.M.; Hashemi, S.J.; Pourali, S. The Comparison of Preventive Analgesic Effects of Ketamine, Paracetamol and Magnesium Sulfate on Postoperative Pain Control in Patients Undergoing Lower Limb Surgery: A Randomized Clinical Trial. Adv. Biomed. Res. 2017, 6, 134. [Google Scholar]
- Altiparmak, B.; Celebi, N.; Canbay, O.; Toker, M.K.; Kilicarslan, B.; Aypar, U. Effect of magnesium sulfate on anesthesia depth, awareness incidence, and postoperative pain scores in obstetric patients. A double-blind randomized controlled trial. Saudi Med. J. 2018, 39, 579–585. [Google Scholar] [CrossRef]
- Kizilcik, N.; Koner, O. Magnesium Sulfate Reduced Opioid Consumption in Obese Patients Undergoing Sleeve Gastrectomy: A Prospective, Randomized Clinical Trial. Obes. Surg. 2018, 28, 2783–2788. [Google Scholar] [CrossRef]
- Gucyetmez, B.; Atalan, H.K.; Aslan, S.; Yazar, S.; Polat, K.Y. Effects of Intraoperative Magnesium Sulfate Administration on Postoperative Tramadol Requirement in Liver Transplantation: A Prospective, Double-Blind Study. Transplant. Proc. 2016, 48, 2742–2746. [Google Scholar] [CrossRef]
- Jarahzadeh, M.H.; Harati, S.T.; Babaeizadeh, H.; Yasaei, E.; Bashar, F.R. The effect of intravenous magnesium sulfate infusion on reduction of pain after abdominal hysterectomy under general anesthesia: A double-blind, randomized clinical trial. Electron. Physician 2016, 8, 2602–2606. [Google Scholar] [CrossRef] [Green Version]
- Salah Abdelgalil, A.; Shoukry, A.A.; Kamel, M.A.; Heikal, A.M.Y.; Ahmed, N. A. Analgesic Potentials of Preoperative Oral Pregabalin, Intravenous Magnesium Sulfate, and their Combination in Acute Postthoracotomy Pain. Clin. J. Pain 2019, 35, 247–251. [Google Scholar] [CrossRef]
- Taheri, A.; Haryalchi, K.; Mansour Ghanaie, M.; Habibi Arejan, N. Effect of low-dose (single-dose) magnesium sulfate on postoperative analgesia in hysterectomy patients receiving balanced general anesthesia. Anesthesiol. Res. Pract. 2015, 2015, 306145. [Google Scholar] [CrossRef]
- Dube, L.; Granry, J.C. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: A review. Can. J. Anaesth. 2003, 50, 732–746. [Google Scholar] [CrossRef] [Green Version]
- Lysakowski, C.; Suppan, L.; Czarnetzki, C.; Tassonyi, E.; Tramer, M.R. Impact of the intubation model on the efficacy of rocuronium during rapid sequence intubation: Systematic review of randomized trials. Acta Anaesthesiol. Scand. 2007, 51, 848–857. [Google Scholar] [CrossRef]
- De Oliveira, G.S., Jr.; Castro-Alves, L.J.; Khan, J.H.; McCarthy, R.J. Perioperative systemic magnesium to minimize postoperative pain: A meta-analysis of randomized controlled trials. Anesthesiology 2013, 119, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, E.; Kirkham, K.R.; Liu, S.S.; Brull, R. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: A meta-analysis. Anaesthesia 2013, 68, 79–90. [Google Scholar] [CrossRef]
- Do, S.H. Magnesium: A versatile drug for anesthesiologists. Korean J. Anesthesiol. 2013, 65, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Eizaga Rebollar, R.; Garcia Palacios, M.V.; Morales Guerrero, J.; Torres, L.M. Magnesium sulfate in pediatric anesthesia: The Super Adjuvant. Paediatr. Anaesth. 2017, 27, 480–489. [Google Scholar] [CrossRef]
- Guo, B.L.; Lin, Y.; Hu, W.; Zhen, C.X.; Bao-Cheng, Z.; Wu, H.H.; Kaye, A.D.; Duan, J.-H.; Qu, Y. Effects of Systemic Magnesium on Post-operative Analgesia: Is the Current Evidence Strong Enough? Pain Physician 2015, 18, 405–418. [Google Scholar]
- Peng, Y.N.; Sung, F.C.; Huang, M.L.; Lin, C.L.; Kao, C.H. The use of intravenous magnesium sulfate on postoperative analgesia in orthopedic surgery: A systematic review of randomized controlled trials. Medicine 2018, 97, e13583. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tao, R. The Impact of Magnesium Sulfate on Pain Control after Laparoscopic Cholecystectomy: A Meta-Analysis of Randomized Controlled Studies. Surg. Laparosc. Endosc. Percutaneous Tech. 2018, 28, 349–353. [Google Scholar] [CrossRef]
- Tramer, M.R.; Schneider, J.; Marti, R.A.; Rifat, K. Role of magnesium sulfate in postoperative analgesia. Anesthesiology 1996, 84, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Bujalska-Zadrozny, M.; Tatarkiewicz, J.; Kulik, K.; Filip, M.; Naruszewicz, M. Magnesium enhances opioid-induced analgesia—What we have learnt in the past decades? Eur. J. Pharm. Sci. 2017, 99, 113–127. [Google Scholar] [CrossRef]
- Ryu, J.H.; Sohn, I.S.; Do, S.H. Controlled hypotension for middle ear surgery: A comparison between remifentanil and magnesium sulphate. Br. J. Anaesth. 2009, 103, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Song, J.W.; Lee, Y.W.; Yoon, K.B.; Park, S.J.; Shim, Y.H. Magnesium sulfate prevents remifentanil-induced postoperative hyperalgesia in patients undergoing thyroidectomy. Anesth. Analg. 2011, 113, 390–397. [Google Scholar] [CrossRef]
- Arcioni, R.; Palmisani, S.; Tigano, S.; Santorsola, C.; Sauli, V.; Romano, S.; Mercieri, M.; Masciangelo, R.; De Blasi, R.A.; Pinto, G. Combined intrathecal and epidural magnesium sulfate supplementation of spinal anesthesia to reduce post-operative analgesic requirements: A prospective, randomized, double-blind, controlled trial in patients undergoing major orthopedic surgery. Acta Anaesthesiol. Scand. 2007, 51, 482–489. [Google Scholar] [CrossRef]
- Kathuria, B.; Luthra, N.; Gupta, A.; Grewal, A.; Sood, D. Comparative efficacy of two different dosages of intrathecal magnesium sulphate supplementation in subarachnoid block. J. Clin. Diagn. Res. 2014, 8, GC01–GC05. [Google Scholar] [CrossRef]
- Ozalevli, M.; Cetin, T.O.; Unlugenc, H.; Guler, T.; Isik, G. The effect of adding intrathecal magnesium sulphate to bupivacaine-fentanyl spinal anaesthesia. Acta Anaesthesiol. Scand. 2005, 49, 1514–1519. [Google Scholar] [CrossRef]
- Turan, A.; Memis, D.; Karamanlioglu, B.; Guler, T.; Pamukcu, Z. Intravenous regional anesthesia using lidocaine and magnesium. Anesth. Analg. 2005, 100, 1189–1192. [Google Scholar] [CrossRef]
- Jerkovic, D.; Tadin, A.; Gavic, L.; Vladislavic, N.Z.; Grgic, N.; Macan, D. Effect of orally administered magnesium on postoperative pain level and trismus after surgical removal of the lower third molars: A randomized, double-blind, placebo-controlled trial. Clin. Oral. Investig. 2020. [Google Scholar] [CrossRef]
- McHardy, F.E.; Chung, F. Postoperative sore throat: Cause, prevention and treatment. Anaesthesia 1999, 54, 444–453. [Google Scholar] [CrossRef]
- Borazan, H.; Kececioglu, A.; Okesli, S.; Otelcioglu, S. Oral magnesium lozenge reduces postoperative sore throat: A randomized, prospective, placebo-controlled study. Anesthesiology 2012, 117, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Teymourian, H.; Mohajerani, S.A.; Farahbod, A. Magnesium and Ketamine Gargle and Postoperative Sore Throat. Anesth. Pain Med. 2015, 5, e22367. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Das, A.; Nandy, S.; RoyBasunia, S.; Mitra, T.; Halder, P.S.; Chhaule, S.; Mandal, S.K. Postoperative Sore Throat Prevention in Ambulatory Surgery: A Comparison between Preoperative Aspirin and Magnesium Sulfate Gargle—A Prospective, Randomized, Double-blind Study. Anesth. Essays Res. 2017, 11, 94–100. [Google Scholar]
- Yadav, M.; Chalumuru, N.; Gopinath, R. Effect of magnesium sulfate nebulization on the incidence of postoperative sore throat. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 168–171. [Google Scholar] [CrossRef]
- Rajan, S.; Malayil, G.J.; Varghese, R.; Kumar, L. Comparison of Usefulness of Ketamine and Magnesium Sulfate Nebulizations for Attenuating Postoperative Sore Throat, Hoarseness of Voice, and Cough. Anesth. Essays Res. 2017, 11, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Fregoso, G.; Wang, A.; Tseng, K.; Wang, J. Transition from Acute to Chronic Pain: Evaluating Risk for Chronic Postsurgical Pain. Pain Physician 2019, 22, 479–488. [Google Scholar]
- Oh, T.K.; Chung, S.H.; Park, J.; Shin, H.; Chang, C.B.; Kim, T.K.; Do, S.-H. Effects of Perioperative Magnesium Sulfate Administration on Postoperative Chronic Knee Pain in Patients Undergoing Total Knee Arthroplasty: A Retrospective Evaluation. J. Clin. Med. 2019, 8, 2231. [Google Scholar] [CrossRef] [Green Version]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, Y.; Truini, T.; Attal, N.; Finnerup, N.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [Green Version]
- Farsi, L.; Afshari, K.; Keshavarz, M.; NaghibZadeh, M.; Memari, F.; Norouzi-Javidan, A. Postinjury treatment with magnesium sulfate attenuates neuropathic pains following spinal cord injury in male rats. Behav. Pharmacol. 2015, 26, 315–320. [Google Scholar] [CrossRef]
- Begon, S.; Pickering, G.; Eschalier, A.; Dubray, C. Magnesium and MK-801 have a similar effect in two experimental models of neuropathic pain. Brain Res. 2000, 887, 436–439. [Google Scholar] [CrossRef]
- Xiao, W.H.; Bennett, G.J. Magnesium suppresses neuropathic pain responses in rats via a spinal site of action. Brain Res. 1994, 666, 168–172. [Google Scholar] [CrossRef]
- Yousef, A.A.; Al-deeb, A.E. A double-blinded randomised controlled study of the value of sequential intravenous and oral magnesium therapy in patients with chronic low back pain with a neuropathic component. Anaesthesia 2013, 68, 260–266. [Google Scholar] [CrossRef]
- Farsi, L.; Naghib Zadeh, M.; Afshari, K.; Norouzi-Javidan, A.; Ghajarzadeh, M.; Naghshband, Z.; Keshavarz, M. Effects of combining methylprednisolone with magnesium sulfate on neuropathic pain and functional recovery following spinal cord injury in male rats. Acta Med. Iran. 2015, 53, 149–157. [Google Scholar] [PubMed]
- Crosby, V.; Wilcock, A.; Corcoran, R. The safety and efficacy of a single dose (500 mg or 1 g) of intravenous magnesium sulfate in neuropathic pain poorly responsive to strong opioid analgesics in patients with cancer. J. Pain Symptom Manag. 2000, 19, 35–39. [Google Scholar] [CrossRef]
- Rondon, L.J.; Privat, A.M.; Daulhac, L.; Davin, N.; Mazur, A.; Fialip, J.; Eschalier, A.; Courteix, C. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J. Physiol. 2010, 588, 4205–4215. [Google Scholar] [CrossRef] [PubMed]
- Ramadass, S.; Basu, S.; Srinivasan, A.R. SERUM magnesium levels as an indicator of status of Diabetes Mellitus type 2. Diabetes Metab. Syndr. 2015, 9, 42–45. [Google Scholar] [CrossRef]
- Arpaci, D.; Tocoglu, A.G.; Ergenc, H.; Korkmaz, S.; Ucar, A.; Tamer, A. Associations of serum Magnesium levels with diabetes mellitus and diabetic complications. Hippokratia 2015, 19, 153–157. [Google Scholar]
- Siddiqui, K.; Bawazeer, N.; Joy, S.S. Variation in macro and trace elements in progression of type 2 diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef] [Green Version]
- Joy, S.S.; George, T.P.; Siddiqui, K. Low magnesium level as an indicator of poor glycemic control in type 2 diabetic patients with complications. Diabetes Metab. Syndr. 2019, 13, 1303–1307. [Google Scholar] [CrossRef]
- Migdalis, I.N.; Xenos, K.; Chairopoulos, K.; Varvarigos, N.; Leontiades, E.; Karmaniolas, K. Ca(2+)-Mg(2+)-ATPase activity and ionized calcium in Type 2 diabetic patients with neuropathy. Diabetes Res. Clin. Pract. 2000, 49, 113–118. [Google Scholar] [CrossRef]
- Zhang, Q.; Ji, L.; Zheng, H.; Li, Q.; Xiong, Q.; Sun, W.; Zhu, X.; Li, Y.; Lu, B.; Liu, X.-X.; et al. Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2018, 146, 1–7. [Google Scholar] [CrossRef]
- Hasanein, P.; Parviz, M.; Keshavarz, M.; Javanmardi, K.; Mansoori, M.; Soltani, N. Oral magnesium administration prevents thermal hyperalgesia induced by diabetes in rats. Diabetes Res. Clin. Pract. 2006, 73, 17–22. [Google Scholar] [CrossRef]
- Hosseini, A.; Abdollahi, M.; Hassanzadeh, G.; Rezayat, M.; Hassani, S.; Pourkhalili, N.; Tabrizian, K.; Ahmad, T.K.; Beyer, C.; Sharifzadeh, M. Protective effect of magnesium-25 carrying porphyrin-fullerene nanoparticles on degeneration of dorsal root ganglion neurons and motor function in experimental diabetic neuropathy. Basic Clin. Pharmacol. Toxicol. 2011, 109, 381–386. [Google Scholar] [CrossRef]
- Hosseini, A.; Sharifzadeh, M.; Rezayat, S.M.; Hassanzadeh, G.; Hassani, S.; Baeeri, M.; Shetab-Bushehri, V.; A Kuznetsov, D.; Abdollahi, M. Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy. Int. J. Nanomed. 2010, 5, 517–523. [Google Scholar]
- Anju, M.; Chacko, L.; Chettupalli, Y.; Maiya, A.G.; Saleena Ummer, V. Effect of Low Level Laser Therapy on serum vitamin D and magnesium levels in patients with diabetic peripheral neuropathy—A pilot study. Diabetes Metab. Syndr. 2019, 13, 1087–1091. [Google Scholar] [CrossRef]
- Mallick-Searle, T.; Snodgrass, B.; Brant, J.M. Postherpetic neuralgia: Epidemiology, pathophysiology, and pain management pharmacology. J. Multidiscip. Healthc. 2016, 9, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Saguil, A.; Kane, S.; Mercado, M.; Lauters, R. Herpes Zoster and Postherpetic Neuralgia: Prevention and Management. Am. Fam. Physician 2017, 96, 656–663. [Google Scholar]
- Yu, H.K.; Lee, J.H.; Cho, S.H.; Kim, Y.I. Relief of postherpetic neuralgia with transforaminal epidural injection of magnesium -a case report. Korean J. Pain 2011, 24, 53–56. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, P.B.; Oh, T.K. Is magnesium sulfate effective for pain in chronic postherpetic neuralgia patients comparing with ketamine infusion therapy? J. Clin. Anesth. 2015, 27, 296–300. [Google Scholar] [CrossRef]
- Song, D.; He, A.; Xu, R.; Xiu, X.; Wei, Y. Efficacy of Pain Relief in Different Postherpetic Neuralgia Therapies: A Network Meta-Analysis. Pain Physician 2018, 21, 19–32. [Google Scholar]
- Wolf, S.; Barton, D.; Kottschade, L.; Grothey, A.; Loprinzi, C. Chemotherapy-induced peripheral neuropathy: Prevention and treatment strategies. Eur. J. Cancer 2008, 44, 1507–1515. [Google Scholar] [CrossRef]
- Gamelin, L.; Boisdron-Celle, M.; Delva, R.; Guerin-Meyer, V.; Ifrah, N.; Morel, A.; Gamelin, E. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: A retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin. Cancer Res. 2004, 10, 4055–4061. [Google Scholar] [CrossRef] [Green Version]
- Grothey, A.; Nikcevich, D.A.; Sloan, J.A.; Kugler, J.W.; Silberstein, P.T.; Dentchev, T.; Wender, D.B.; Novotny, P.J.; Chitaley, U.; Alberts, S.R.; et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J. Clin. Oncol. 2011, 29, 421–427. [Google Scholar] [CrossRef]
- Knijn, N.; Tol, J.; Koopman, M.; Werter, M.J.; Imholz, A.L.; Valster, F.A.; Mol, L.; Vincent, A.; Teerenstra, S.; Punt, C. The effect of prophylactic calcium and magnesium infusions on the incidence of neurotoxicity and clinical outcome of oxaliplatin-based systemic treatment in advanced colorectal cancer patients. Eur. J. Cancer 2011, 47, 369–374. [Google Scholar] [CrossRef]
- Pachman, D.R.; Ruddy, K.; Sangaralingham, L.R.; Grothey, A.; Shah, N.D.; Beutler, A.S.; Hubbard, J.M.; Loprinzi, C.L. Calcium and Magnesium Use for Oxaliplatin-Induced Neuropathy: A Case Study to Assess How Quickly Evidence Translates Into Practice. J. Natl. Compr. Cancer Netw. 2015, 13, 1097–1101. [Google Scholar] [CrossRef]
- Ishibashi, K.; Okada, N.; Miyazaki, T.; Sano, M.; Ishida, H. Effect of calcium and magnesium on neurotoxicity and blood platinum concentrations in patients receiving mFOLFOX6 therapy: A prospective randomized study. Int. J. Clin. Oncol. 2010, 15, 82–87. [Google Scholar] [CrossRef]
- Chay, W.Y.; Tan, S.H.; Lo, Y.L.; Ong, S.Y.; Ng, H.C.; Gao, F.; Koo, W.; Choo, S. Use of calcium and magnesium infusions in prevention of oxaliplatin induced sensory neuropathy. Asia Pac. J. Clin. Oncol. 2010, 6, 270–277. [Google Scholar] [CrossRef]
- Jordan, B.; Jahn, F.; Beckmann, J.; Unverzagt, S.; Muller-Tidow, C.; Jordan, K. Calcium and Magnesium Infusions for the Prevention of Oxaliplatin-Induced Peripheral Neurotoxicity: A Systematic Review. Oncology 2016, 90, 299–306. [Google Scholar] [CrossRef]
- Wen, F.; Zhou, Y.; Wang, W.; Hu, Q.C.; Liu, Y.T.; Zhang, P.F.; Du, Z.D.; Dai, J.; Li, Q. Ca/Mg infusions for the prevention of oxaliplatin-related neurotoxicity in patients with colorectal cancer: A meta-analysis. Ann. Oncol. 2013, 24, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ouyang, J.; He, Z.; Zhang, S. Infusion of calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in colorectal cancer: A systematic review and meta-analysis. Eur. J. Cancer 2012, 48, 1791–1798. [Google Scholar] [CrossRef]
- Okifuji, A.; Gao, J.; Bokat, C.; Hare, B.D. Management of fibromyalgia syndrome in 2016. Pain Manag. 2016, 6, 383–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sendur, O.F.; Tastaban, E.; Turan, Y.; Ulman, C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatol. Int. 2008, 28, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, K.M.; Lee, D.J.; Kim, B.T.; Park, S.B.; Cho, D.Y.; Suh, C.-H.; Kim, H.-A.; Park, R.-W.; Joo, N.-S. Women with fibromyalgia have lower levels of calcium, magnesium, iron and manganese in hair mineral analysis. J. Korean Med. Sci. 2011, 26, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Andretta, A.; Dias Batista, E.; Madalozzo Schieferdecker, M.E.; Rasmussen Petterle, R.; Boguszewski, C.L.; Dos Santos Paiva, E. Relation between magnesium and calcium and parameters of pain, quality of life and depression in women with fibromyalgia. Adv. Rheumatol. 2019, 59, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weglicki, W.B.; Mak, I.T.; Kramer, J.H.; Dickens, B.F.; Cassidy, M.M.; Stafford, R.E.; Phillips, M.S. Role of free radicals and substance P in magnesium deficiency. Cardiovasc. Res. 1996, 31, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.; Schweinhardt, P. Dysfunctional neurotransmitter systems in fibromyalgia, their role in central stress circuitry and pharmacological actions on these systems. Pain Res. Treat. 2012, 2012, 741746. [Google Scholar] [CrossRef]
- Weglicki, W.B.; Phillips, T.M. Pathobiology of magnesium deficiency: A cytokine/neurogenic inflammation hypothesis. Am. J. Physiol. 1992, 263, R734–R737. [Google Scholar] [CrossRef] [Green Version]
- Engen, D.J.; McAllister, S.J.; Whipple, M.O.; Cha, S.S.; Dion, L.J.; Vincent, A.; Bauer, B.A.; Wahner-Roedler, D.L. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: A feasibility study. J. Integr. Med. 2015, 13, 306–313. [Google Scholar] [CrossRef]
- Bagis, S.; Karabiber, M.; As, I.; Tamer, L.; Erdogan, C.; Atalay, A. Is magnesium citrate treatment effective on pain, clinical parameters and functional status in patients with fibromyalgia? Rheumatol. Int. 2013, 33, 167–172. [Google Scholar] [CrossRef] [PubMed]
- French, L. Dysmenorrhea. Am. Fam. Physician 2005, 71, 285–291. [Google Scholar]
- Chhabra, S.; Gokhake, S.; Yadav, S. Primary dysmenorrhea and serum magnesium in young girls a pilot study. Nessa J. Gynecol. 2017, 1, 1–9. [Google Scholar]
- Yakubova, O. Juvenile dysmenorrhea associated with hypomagnesemia and connective tissue dysplasia. Med. Health Sci. J. 2012, 11, 85–88. [Google Scholar] [CrossRef]
- Pattanittum, P.; Kunyanone, N.; Brown, J.; Sangkomkamhang, U.S.; Barnes, J.; Seyfoddin, V.; Marjoribanks, J. Dietary supplements for dysmenorrhoea. Cochrane Database Syst. Rev. 2016, 3, CD002124. [Google Scholar] [CrossRef] [PubMed]
- Fontana-Klaiber, H.; Hogg, B. Therapeutic effects of magnesium in dysmenorrhea. Schweiz. Rundsch. Med. Prax. 1990, 79, 491–494. [Google Scholar] [PubMed]
- Seifert, B.; Wagler, P.; Dartsch, S.; Schmidt, U.; Nieder, J. Magnesium—A new therapeutic alternative in primary dysmenorrhea. Zent. Gynakol. 1989, 111, 755–760. [Google Scholar]
- Arrowsmith, S.; Neilson, J.; Wray, S. The combination tocolytic effect of magnesium sulfate and an oxytocin receptor antagonist in myometrium from singleton and twin pregnancies. Am. J. Obstet. Gynecol. 2016, 215, 789, e1–e9. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.J.; Byun, J.M.; Kim, Y.N.; Lee, K.B.; Sung, M.S.; Kim, K.T.; Shin, J.B.; Jeong, D.H. Antenatal magnesium sulfate for both tocolysis and fetal neuroprotection in premature rupture of the membranes before 32 weeks’ gestation. J. Matern. Fetal Neonatal Med. 2018, 31, 1431–1441. [Google Scholar] [CrossRef]
- Mauskop, A.; Altura, B.T.; Cracco, R.Q.; Altura, B.M. Intravenous magnesium sulfate rapidly alleviates headaches of various types. Headache 1996, 36, 154–160. [Google Scholar] [CrossRef]
- Dolati, S.; Rikhtegar, R.; Mehdizadeh, A.; Yousefi, M. The Role of Magnesium in Pathophysiology and Migraine Treatment. Biol. Trace Elem Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Sun-Edelstein, C.; Mauskop, A. Role of magnesium in the pathogenesis and treatment of migraine. Expert Rev. Neurother. 2009, 9, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Gallai, V.; Sarchielli, P.; Morucci, P.; Abbritti, G. Red blood cell magnesium levels in migraine patients. Cephalalgia 1993, 13, 94–98, discussion 73. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Millot, J.M.; Sebille, S.; Delabroise, A.M.; Thomas, E.; Manfait, M.; Arnaud, M.J. Free and total magnesium in lymphocytes of migraine patients—Effect of magnesium-rich mineral water intake. Clin. Chim. Acta 2000, 295, 63–75. [Google Scholar] [CrossRef]
- Assarzadegan, F.; Asgarzadeh, S.; Hatamabadi, H.R.; Shahrami, A.; Tabatabaey, A.; Asgarzadeh, M. Serum concentration of magnesium as an independent risk factor in migraine attacks: A matched case-control study and review of the literature. Int. Clin. Psychopharmacol. 2016, 31, 287–292. [Google Scholar] [CrossRef]
- Baratloo, A.; Mirbaha, S.; Delavar Kasmaei, H.; Payandemehr, P.; Elmaraezy, A.; Negida, A. Intravenous caffeine citrate vs. magnesium sulfate for reducing pain in patients with acute migraine headache; a prospective quasi-experimental study. Korean J. Pain 2017, 30, 176–182. [Google Scholar] [CrossRef]
- Taubert, K. Magnesium in migraine. Results of a multicenter pilot study. Fortschr. Med. 1994, 112, 328–330. [Google Scholar]
- Peikert, A.; Wilimzig, C.; Kohne-Volland, R. Prophylaxis of migraine with oral magnesium: Results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalalgia 1996, 16, 257–263. [Google Scholar] [CrossRef]
- Koseoglu, E.; Talaslioglu, A.; Gonul, A.S.; Kula, M. The effects of magnesium prophylaxis in migraine without aura. Magnes Res. 2008, 21, 101–108. [Google Scholar]
- Pfaffenrath, V.; Wessely, P.; Meyer, C.; Isler, H.R.; Evers, S.; Grotemeyer, K.H.; Taneri, Z.; Soyka, D.; G”Bel, H.; Fischer, M.; et al. Magnesium in the prophylaxis of migraine--a double-blind placebo-controlled study. Cephalalgia 1996, 16, 436–440. [Google Scholar] [CrossRef]
- Altura, B.M.; Altura, B.T. Tension headaches and muscle tension: Is there a role for magnesium? Med. Hypotheses 2001, 57, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Mishima, K.; Takeshima, T.; Shimomura, T.; Okada, H.; Kitano, A.; Takahashi, K.; Nakashima, K. Platelet ionized magnesium, cyclic AMP, and cyclic GMP levels in migraine and tension-type headache. Headache 1997, 37, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Sarchielli, P.; Coata, G.; Firenze, C.; Morucci, P.; Abbritti, G.; Gallai, V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia 1992, 12, 21–27. [Google Scholar] [CrossRef]
- Grazzi, L.; Andrasik, F.; Usai, S.; Bussone, G. Magnesium as a treatment for paediatric tension-type headache: A clinical replication series. Neurol. Sci. 2005, 25, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Grazzi, L.; Andrasik, F.; Usai, S.; Bussone, G. Magnesium as a preventive treatment for paediatric episodic tension-type headache: Results at 1-year follow-up. Neurol. Sci. 2007, 28, 148–150. [Google Scholar] [CrossRef]
- Li, Y.; Yue, J.; Yang, C. Unraveling the role of Mg(++) in osteoarthritis. Life Sci. 2016, 147, 24–29. [Google Scholar] [CrossRef]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Severino, P.; Netti, L.; Mariani, M.V.; Maraone, A.; D’Amato, A.; Scarpati, R.; Infusino, F.; Pucci, M.; LaValle, C.; Maestrini, V.; et al. Prevention of Cardiovascular Disease: Screening for Magnesium Deficiency. Cardiol. Res. Pract. 2019, 2019, 4874921. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.-J.; Na, H.-S.; Do, S.-H. Magnesium and Pain. Nutrients 2020, 12, 2184. https://doi.org/10.3390/nu12082184
Shin H-J, Na H-S, Do S-H. Magnesium and Pain. Nutrients. 2020; 12(8):2184. https://doi.org/10.3390/nu12082184
Chicago/Turabian StyleShin, Hyun-Jung, Hyo-Seok Na, and Sang-Hwan Do. 2020. "Magnesium and Pain" Nutrients 12, no. 8: 2184. https://doi.org/10.3390/nu12082184