The Dilemma of Road Safety in the Eastern Province of Saudi Arabia: Consequences and Prevention Strategies
Abstract
:1. Introduction
2. Study Area
3. Data Collection and Analysis
4. Results
4.1. Temporal Variations of RTCs
4.2. RTC Variations among the Cities of the Eastern Province
4.3. RTC Distribution by Prevailing Crash Causes and Types
4.4. Crash Severity Modeling Using Logistic Regression
5. Discussion
6. Mitigation and Prevention Strategies
6.1. Advanced Crash Data Recording System
6.2. Legislation and Enforcement
6.3. Safety Education Programs and Awareness Campaigns
6.4. Induction of Traffic and Speed Calming Measures
6.5. Emergency Medical Care Units for Victims
6.6. Rigorous Identification and Treatment of Crash Hotspots
6.7. Engagement and Coordination of Key Stakeholders
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Transport Forum (ITF). Road Safety Annual Report; International Transport Forum (ITF): Organization for Economic Cooperation and Development (OECD): Paris, France, 2018. [Google Scholar]
- World Health Organization. Global Status Report on Road Safety; World Health Organization: Paris, France, 2018. [Google Scholar]
- World Health Organization. Global Status Report on Road Safety; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Elizabeth Kopits, M.C. Traffic fatalities and economic growth. Accid. Anal. Prev. 2005, 37, 10. [Google Scholar]
- Murray, C.J.; Lopez, A.D. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997, 349, 8. [Google Scholar] [CrossRef]
- Irfanullah, I.; Jamal, A.; Subhan, F. Public perception of autonomous car: A case study for Pakistan. Adv. Transp. Stud. 2019, 49, 145–154. [Google Scholar]
- Rolison, J.J.; Regev, S.; Moutari, S.; Feeney, A. What are the factors that contribute to road accidents? An assessment of law enforcement views, ordinary drivers’ opinions, and road accident records. Accid. Anal. Prev. 2018, 115, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Abdel-aty, M.A.; Radwan, A.E. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 2000, 32, 633–642. [Google Scholar] [CrossRef]
- Ayinla, T.; Sarah, A.; Olusegun, S.; Olugbenga, J. Factors Influencing High Rate of Commercial Motorcycle Accidents in Nigeria. Am. Int. J. Contemp. Res. 2012, 2, 130–140. [Google Scholar]
- Cafiso, S.; di Graziano, A.; di Silvestro, G.; la Cava, G.; Persaud, B. Development of comprehensive accident models for two-lane rural highwaysusing exposure, geometry, consistency and context variables. Accid. Anal. Prev. 2010, 42, 8. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Liu, X.C.; Ci, Y.; Huang, H.; Ma, J.; Chen, Y.; Guan, H. Driver injury severity outcome analysis in rural interstate highway crashes: A two-level Bayesian logistic regression interpretation. Accid. Anal. Prev. 2016, 97, 10. [Google Scholar] [CrossRef]
- Haddon, W. Advances in the Epidemiology of Injuries as a Basis for Public Policy. Landmarks Am. Epidemiol. P 1980, 95, 411–421. [Google Scholar]
- Haghighi, N.; Liu, X.C.; Zhang, G.; Porter, R.J. Impact of roadway geometric features on crash severity on rural two-lane highways. Accid. Anal. Prev. 2018, 111, 34–42. [Google Scholar] [CrossRef]
- López, G.; Mujalli, R.; Calvo, F.J.; de Oña, J. Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accid. Anal. Prev. 2013, 51, 1–10. [Google Scholar]
- Lord, D.; Manar, A.; Vizioli, A. Modeling crash-flow-density and crash-flow-V/C ratio relationships for rural and urban freeway segments. Accid. Anal. Prev. 2005, 37, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.L. Assessement of Human Factors as Determinants of Road Traffic Accidents among Commercial Vehicle Drivers in GbonyinLocal Government Area of Ekiti State, Nigeria. IOSR J. Res. Method Educ. 2015, 5, 69–74. [Google Scholar]
- Abdel-aty, M.A. Analysis of driver injury severity levels at multiple locations usingordered probit models. J. Saf. Res. 2003, 34, 7. [Google Scholar] [CrossRef]
- Jonathan Aguero-Valverde, P.P.J. Spatial analysis of fatal and injury crashes in Pennsylvania. Accid. Anal. Prev. 2006, 38, 8. [Google Scholar] [CrossRef]
- WHO. World Report on Road Traffic Injury Prevention; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Jafarpour, S.; Rahimi-movaghar, V. Determinants of risky driving behavior: A narrative review. Med. J. Islam. Repub. Iran 2014, 28, 1–8. [Google Scholar]
- Ernstberger, A.; Joeris, A.; Daigl, M.; Kiss, M.; Angerpointner, K.; Nerlich, M.; Schmucker, U. Decrease of morbidity in road traffic accidents in a high income country—An analysis of 24,405 accidents in a 21 year period. Injury 2015, 46, S135–S143. [Google Scholar] [CrossRef]
- Longthorne, A.; Rajesh Subramanian, C.-L.C. An Analysis of the Significant Decline in Motor Vehicle Traffic Fatalities in 2008; National Highway Traffic Safety Administration, (NHTSA): Washington, DC, USA, 2010.
- Cuomo, A.M.; Egan, T.L.; Commissioner, E.D. Highway Safety Strategic Plan; Newyork State Department of Transportation (NYDOT): New York, NY, USA, 2019.
- Rahman, M.T.; Planning, R. Land Use and Land Cover Changes and Urban Sprawl in Riyadh, Saudi Arabia: An Analysis Using Multi-Temporal Landsat Data and Shannon’s Entropy Index. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1017–1021. [Google Scholar]
- Traffic, G.D. Annual Traffic Report; Ministry of Interior (MOI): Riyadh, Saudi Arabia, 2013.
- Mohamed, H.A. Estimation of Socio-Economic Cost of Road Accidents in Saudi Arabia: Willingness-To-Pay Approach (WTP). Adv. Manag. Appl. Econ. 2015, 5, 19. [Google Scholar]
- Al Turki, Y.A. How can Saudi Arabia use the Decade of Action for Road Safety to catalyse road traffic injury prevention policy and interventions? Int. J. Inj. Contr. Saf. Promot. 2014, 21, 397–402. [Google Scholar] [CrossRef]
- Ansari, S.; Akhdar, F.; Mandoorah, M.; Moutaery, K. Causes and effects of road traffic accidents in Saudi Arabia. Public Health 2000, 114, 37–39. [Google Scholar] [CrossRef]
- Ageli, M.M.; Zaidan, A.M. Road Traffic Accidents in Saudi Arabia: An ADRL Approach and Multivariate Granger Causality. Int. J. Econ. Financ. 2013, 5, 26–31. [Google Scholar] [CrossRef]
- Alghnam, S.; Alrowaily, M.; Alkelya, M.; Alsaif, A.; Almoaiqel, F.; Aldegheishem, A. The prevalence of seatbelt and mobile phone use among drivers in Riyadh, Saudi Arabia: An observational study. J. Saf. Res. 2018, 66, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Bendak, S. Seat belt utilization in Saudi Arabia and its impact on road accident injuries. Accid. Anal. Prev. 2005, 37, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, U.B.; Ahmed, S. A Review of Road traffic accident in Saudi Arabia: The neglected epidemic. Indian J. Forensic Community Med. 2015, 2, 242. [Google Scholar] [CrossRef]
- Bener, A.; Jadaan, K.S. A perspective on road fatalities in Jeddah, Saudi Arabia. Accid. Anal. Prev. 1992, 24, 143–148. [Google Scholar] [CrossRef]
- Mohamed, M.; Bromfield, N.F. Attitudes, driving behavior, and accident involvement among young male drivers in Saudi Arabia. Transp. Res. Part F Traffic Psychol. Behav. 2017, 47, 59–71. [Google Scholar] [CrossRef]
- Ratrout, N.T.; Chowdhury, S.; Gazder, U.; Rahman, S.M. Characterization of crash-prone drivers in Saudi Arabia—A multivariate analysis. Case Stud. Transp. Policy 2017, 5, 134–142. [Google Scholar] [CrossRef]
- Memish, Z.A.; Jaber, S.; Mokdad, A.H.; AlMazroa, M.A.; Murray, C.J.; Al Rabeeah, A.A. Burden of Disease, Injuries, and Risk Factors in the Kingdom of Saudi Arabia, 1990–2010. Prev. Chronic. Dis. 2014, 11, E169. [Google Scholar] [CrossRef] [Green Version]
- Mansuri, F.A.; Al-Zalabani, A.H.; Zalat, M.M.; Qabshawi, R.I. Road safety and road traffic accidents in Saudi Arabia: A systematic review of existing evidence. Saudi Med. J. 2015, 36, 418–424. [Google Scholar] [CrossRef]
- Alghnam, S.; Towhari, J.; Alkelya, M.; Alsaif, A. The Association between Mobile Phone Use and Severe Traffic Injuries: A Case-Control Study from Saudi Arabia. Int. J. Environ. Res. Public Health 2019, 16, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministery of Interior (MOI). Statistical Yearbook; Ministery of Interior (MOI): Riyadh, Saudi Arabia, 2019.
- Traffic, G.D. Number of of registered vehicles In The Kingdom By Region. General Authority for Statistics: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Potoglou, D.; Carlucci, F.; Cirà, A.; Restaino, M.; Carlucci, F.; Cir, A. Factors associated with urban non-fatal road- accident severity. Int. J. Inj. Contr. Saf. Promot. 2018, 25, 303–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilaça, M.; Coelho, M.C. A Rare Event Modelling Approach to Assess Injury Severity Risk of Vulnerable Road Users. Safety 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, M.; Ksaibati, K. Application of multinomial and ordinal logistic regression to model injury severity of truck crashes, using violation and crash data. J. Mod. Transp. 2018, 26, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Agresti, A. Analysis of Ordinal Categorical Data, 2nd ed.; WILEY: Hoboken, NJ, USA, 2010. [Google Scholar]
- Fienberg, S.E. The Analysis of Cross-Classifi ed Categorical Data, 2nd ed.; Springer: Berlin, Germany, 1979; ISBN 9780387728247. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Wiley series in probability and statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 9780470582473. [Google Scholar]
- Zhang, Y.; Yan, X. Red-Light-Running Crashes’ Classification, Comparison, and Risk Analysis Based on General Estimates System (GES) Crash Database. Int. J. Environ. Res. Public Health 2018, 15, 1290. [Google Scholar] [CrossRef] [Green Version]
- Young, K.L.; Salmon, P.M.; Lenné, M.G. At the cross-roads: A non-road examination of driving errors at intersections. Accid. Anal. Prev. 2013, 58, 226–234. [Google Scholar] [CrossRef]
- Jahangiri, A.; Rakha, H.; Dingus, T.A. Red-light running violation prediction using observational and simulator data. Accid. Anal. Prev. 2016, 96, 316–328. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Wu, X.; Yu, G.; Ding, C. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model. Accid. Anal. Prev. 2016, 95, 266–273. [Google Scholar] [CrossRef]
- De Pauw, E.; Daniels, S.; Brijs, T.; Hermans, E.; Wets, G. To brake or to accelerate? Safety effects of combined speed and redlight cameras. J. Saf. Res. 2014, 50, 59–65. [Google Scholar] [CrossRef]
- Høye, A. Still red light for red light cameras? An update. Accid. Anal. Prev. 2013, 55, 12. [Google Scholar] [CrossRef]
- Wong, K.M.L.D. A before-and-after study of driver stopping propensityat red light camera intersections. Accid. Anal. Prev. 2003, 35, 10. [Google Scholar]
- Polders, E.; Cornu, J.; De Ceunynck, T.; Daniels, S.; Brijs, K.; Brijs, T.; Elke Hermans, G.W. 114.Drivers’ behavioral responses to combined speed and red light cameras_Elsevier Enhanced Reader.pdf. Accid. Anal. Prev. 2015, 81, 14. [Google Scholar] [CrossRef] [PubMed]
- Ringert, J.; Koonce, P.; Bansen, J.; Nguyen, T.; McGill, J.; Stewart, D.; Suggett, J.; Neuman, T.; Antonucci, N.; Hardy, K.; et al. Signalized Intersections Informational Guide; Federal Highway Administration (FHWA), Office of Safety: Washington, DC, USA, 2013.
- Mohammed Abdel-Aty, J.K. Exploring the overall and specific crash severity levels at signalized intersections. Accid. Anal. Prev. 2005, 37, 9. [Google Scholar]
- Ye, X.; Pendyala, R.M.; Al-Rukaibi, F.S.; Konduri, K. A joint Model of Crash Type and Severrity for two-vehicle Crashes. Compendium of Papers CD-ROM, the 87th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- Retting, R.A.; Kyrychenko, S.Y. Reductions in Injury Crashes Associated With Red Light Camera Enforcement in Oxnard, California. Am. J. Public Health 2002, 92, 1822–1825. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, A.S. Using logistic regression to estimate the influence of accidentfactors on accident severity. Accid. Anal. Prev. 2002, 34, 729–741. [Google Scholar] [CrossRef]
- Jung, S.; Qin, X.; Noyce, D.A. Rainfall effect on single-vehicle crash severities using polychotomous response models. Accid. Anal. Prev. 2010, 42, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Schramm, P.; Nolan, A.; Hess, J. Adverse weather conditions and fatal motor vehicle crashes in the United States, 1994–2012. Environ. Health 2016, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.L.; Sharif, H.O. Rainfall impacts on traffic safety: Rain-related fatal crashes in Texas. Geomatics Nat. Hazards Risk I 2016, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Shankar, V.; Mannering, F.; Barfield, W. Statistical Analysis of Accident Severity on Rural Freeways. Accid. Anal. Prev. 1996, 28, 391–401. [Google Scholar] [CrossRef]
- Zhang, W.; Li, R.; Shang, P.; Liu, H. Impact Analysis of Rainfall on Traffic Flow Characteristics in Beijing. Int. J. Intell. Transp. Syst. Res. 2018, 17, 150–160. [Google Scholar] [CrossRef]
- Hu, S.; Lin, H.; Xie, K. Impacts of Rain and Waterlogging on Traffic Speed and Volume on Urban Roads. In Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018. [Google Scholar]
- Farag, S.G.; Hashim, I.H.; El-hamrawy, S.A. Analysis and Assessment of Accident Characteristics: Case Study of Dhofar Governorate, Sultanate of Oman. Int. J. Traffic Transp. Eng. 2014, 3, 189–198. [Google Scholar]
- Ben-hamouche, M.; Al-janahi, A.; Al-madani, H. Traffic Accidents in Bahrain: A Statistical and Spatial GIS-based Analysis. J. King Saud Univ. 2011, 23, 1–18. [Google Scholar]
- Farhan, M.; Faruque, S.; Mohammed, A.; Osman, S.; Al-jabari, O.; Almojil, A. A Technical Perspective on Roadway Safety in Eastern Province: Data Evaluation and Spatial Analysis. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Eng. 2014, 8, 2896–2902. [Google Scholar]
- Al-Ghamdi, A.S. Road accidents in Saudi Arabia: A comparative and analytical study. Trans. Built Environ. 1996, 26, 23. [Google Scholar]
- Shokouhyar, S.; Taati, E.; Zolfaghary, S. The effect of drivers’ demographic characteristics on road accidents in different seasons using data mining. Promet Traffic Traffico 2017, 29, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Bener, A. The neglected epidemic: Road traffic accidents in a developing country, State of Qatar. Int. J. Inj. Contr. Saf. Promot. 2005, 12, 45–47. [Google Scholar] [CrossRef]
- Bener1, A.; Crundall, D. Road traffic accidents in the United Arab Emirates compared to Western countries. Adv. Transp. Stud. 2005, 6, 5–12. [Google Scholar]
- Singh, S.K. Road Traffic Accidents in India: Issues and Challenges. Transp. Res. Procedia 2017, 25, 4712–4723. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, H.; Hu, G.; Cui, M.; Gu, Y.; Xiang, H. Basic characteristics of road traffic deaths in china. Iran. J. Public Health 2013, 42, 7–15. [Google Scholar]
- Barua, U.; Azad, A.; Tay, R. Fatality Risk of Intersection Crashes on Rural Undivided Highways in Alberta, Canada. Transp. Res. Rec. J. Transp. Res. Board 2010, 2148, 107–115. [Google Scholar] [CrossRef]
- Shah, S.; Ahmad, N.; Shen, Y.; Pirdavani, A.; Basheer, M.; Brijs, T. Road Safety Risk Assessment: An Analysis of Transport Policy and Management for Low-, Middle-, and High-Income Asian Countries. Sustainability 2018, 10, 389. [Google Scholar] [CrossRef] [Green Version]
- Altwaijri, S.; Mohammed Quddus, A.B. Analysing the Severity andFrequency of Traffic Crashes inRiyadh City Using StatisticalModels. Int. J. Transp. Sci. Technol. 2012, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Ponnaluri, R.V. Road traffic crashes and risk groups in India: Analysis, interpretations, and prevention strategies. IATSS Res. 2012, 35, 6. [Google Scholar] [CrossRef] [Green Version]
- Zwetsloot, G.I.J.M.; Kines, P.; Wybo, J.-L.; Ruotsala, R.; Drupsteen, L.; Bezemer, R.A. Zero Accident Vision based strategies in organisations: Innovativeperspectives. Saf. Sci. 2017, 91, 260–268. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.S.; AlGadhi, S.A. Warning signs as countermeasures to camel-vehicle collisions in Saudi Arabia. Accid. Anal. Prev. 2004, 36, 749–760. [Google Scholar] [CrossRef]
- Sharma, B.R. Road traffic injuries: A major global public healthcrisis. Public Health 2008, 122, 8. [Google Scholar] [CrossRef]
- Jadaan, K.; Almatawah, J. A Review of Strategies to Promote Road Safety in Rich Developing Countries: The Gcc Countries Experience. Int. J. Eng. Res. Appl. 2016, 6, 2248–962212. [Google Scholar]
- Marianna Imprialou, M.Q. Crash data quality for road safety research: Current state and future directions. Accid. Anal. Prev. 2019, 130, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Dove, A.F.; Pearson, J.C.G.; Weston, P.A.M. Data collection from road traffic accidents. Arch. Emerg. Med. 1986, 3(3), 193–198. [Google Scholar] [CrossRef]
- Kibrom, A. Abay Investigating the nature and impact of reporting bias in roadcrash data. Transp. Res. Part A Policy Pract. 2015, 71, 15. [Google Scholar]
- Austin, K. The Identification of Mistakes in Road Accident Records: Part 1, Locational Variables. Accid. Anal. Prev. 1995, 27, 16. [Google Scholar] [CrossRef]
- Wegrnan, F.C.M. Legislation, regulation and enforcement to improve road safety in developing countries Legislation, regulation and enforcement to improve road safety in developing countries. In Proceedings of the Contribution to the World Bank Seminar on Road Safety, Washington, DC, USA, 14–15 December 1992; p. 13. [Google Scholar]
- International Transport Forum (ITF). Toward Zero Ambitious Road Safety Targets and the Safe System Approach; International Transport Forum (ITF): Organization for Economic Cooperation and Development (OECD): Stockholm, Sweden, 2008. [Google Scholar]
- Gitelman, V.; Hendel, L.; Carmel, R. An examination of the national road-safety programs in the ten world’ s leading countries in road safety. Eur. Transp. Res. Rev. 2012, 4, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Tamara Hoekstra, F.W. Improving the effectiveness of road safety campaigns: Current and new practices. IATSS Res. 2011, 34, 7. [Google Scholar] [CrossRef] [Green Version]
- Delhomme, P.; de Dobbeleer, W.; Forward, S.; Simões, A.; Adamos, G.; Areal, A.; Chappé, J.; Eyssartier, C.; Loukopoulos, P.; Nathanail, T.; et al. Manual for Designing, Implementing and Evaluating Road Safety Communication Campaigns; Belgian Road Safety Institute: Brussels, Belgium, 2009. [Google Scholar]
- Goldenbeld, C.; Twisk, D.; Houwing, S. Effects of persuasive communication and group discussionson acceptability of anti-speeding policies for maleand female drivers. Transp. Res. Part F Traffic Psychol. Behav. 2008, 11, 14. [Google Scholar] [CrossRef]
- Zalewski, A.; Kempa, J. Traffic Calming as a Comprehensive Solution Improving Traffic Road Safety. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 062035. [Google Scholar] [CrossRef]
- Jateikienė, L.; Andriejauskas, T.; Lingytė, I.; Jasiuniene, V. Impact assessment of speed calming measures on road safety. Transp. Res. Procedia 2016, 14, 4228–4236. [Google Scholar] [CrossRef] [Green Version]
- Audrius, V.; Donatas, Č.; Vilma, J.; Laura, J.; Tadas, A.; Dovydas, S.; Kornelija, R. TRAFFIC CALMING MEASURES: An evaluation of the effect on driving speed. Promet Traffic Traffico 2017, 29, 275–285. [Google Scholar]
- Yannis, G.; Kondyli, A.; Georgopoulou, X. Investigation of the impact of low cost traffic engineering measures on road safety in urban areas. Int. J. Inj. Contr. Saf. Promot. 2014, 21, 181–189. [Google Scholar] [CrossRef]
- Rotaru, L.t. the management in “the golden hour” and the survival rate of the management in “the golden hour” and the survival rate of the polytraumatized patient. J. Exp. Med. Surg. Res. 2010, XVII, 7. [Google Scholar]
- Rogers, F.B.; Rittenhouse, K.J.; Gross, B.W. The Golden Hour in Trauma: Dogma or Medical Folklore? Injury 2015, 46, 525–527. [Google Scholar] [CrossRef]
- Abdellah, O.A.; Aborokbah, M.M.; Elfaki, A.O. Improving Pre-hospital Care of Road Traffic Accident’s Victims with Smartphone Technology. Int. J. Interative Mob. Technol. 2018, 2, 130–141. [Google Scholar] [CrossRef]
- Dereli, M.A.; Erdogan, S. A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods. Transp. Res. Part A Policy Pract. 2017, 103, 106–117. [Google Scholar] [CrossRef]
- Yu, H.; Liu, P.; Chen, J.; Wang, H. Comparative analysis of the spatial analysis methods for hotspot identification. Accid. Anal. Prev. 2014, 66, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Meng, Q. A note on hotspot identification for urban expressways. Saf. Sci. 2014, 66, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, T.; Sun, J.; Chen, F. Hotspot identification for Shanghai expressways using the quantitative risk assessment method. Int. J. Environ. Res. Public Health 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Huang, H.; Lee, J.; Gao, M.; Abdel-Aty, M. Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach. Accid. Anal. Prev. 2016, 92, 256–264. [Google Scholar] [CrossRef]
- Guerrero-Barbosa, T.E.; Amarís-Castro, G.E. Application of Bayesian techniques for the identification of accident-prone road sections. Dyna 2014, 81, 209–214. [Google Scholar] [CrossRef]
Year | January | February | March | April | May | June | July | August | September | October | November | December | Total Crashes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2009 | 402 (12.4) | 238 (7.34) | 262 (8.08) | 277 (8.54) | 266 (8.2) | 260 (8.02) | 389 (12) | 235 (7.25) | 228 (7.03) | 204 (6.29) | 213 (6.58) | 268 (8.27) | 3242 (100) |
2010 | 297 (10.29) | 256 (8.87) | 222 (7.69) | 225 (7.8) | 246 (8.52) | 225 (7.8) | 249 (8.63) | 251 (8.7) | 187 (6.48) | 183 (6.34) | 217 (7.52) | 328 (11.36) | 2886 (100) |
2011 | 288 (8.24) | 292 (8.36) | 277 (7.93) | 276 (7.9) | 265 (7.58) | 260 (7.44) | 251 (7.18) | 385 (11.02) | 326 (9.34) | 313 (8.96) | 294 (8.41) | 267 (7.64) | 3494 (100) |
2012 | 349 (7.1) | 410 (8.34) | 432 (8.79) | 367 (7.47) | 332 (6.76) | 383 (7.79) | 480 (9.77) | 471 (9.58) | 460 (9.36) | 474 (9.65) | 356 (7.25) | 400 (8.14) | 4914 (100) |
2013 | 350 (8.33) | 295 (7.02) | 331 (7.87) | 313 (7.45) | 358 (8.52) | 354 (8.42) | 375 (8.92) | 341 (8.1) | 333 (7.92) | 314 (7.47) | 381 (9.06) | 459 (10.92) | 4204 (100) |
2014 | 414 (9.92) | 363 (8.7) | 371 (8.89) | 365 (8.75) | 349 (8.36) | 332 (7.96) | 341 (8.17) | 326 (7.81) | 297 (7.12) | 294 (7.05) | 354 (8.48) | 367 (8.79) | 4173 (100) |
2015 | 363 (8.88) | 298 (7.29) | 403 (9.86) | 318 (7.78) | 324 (7.93) | 309 (7.56) | 331 (8.1) | 329 (8.05) | 303 (7.41) | 308 (7.54) | 376 (9.2) | 425 (10.4) | 4087 (100) |
2016 | 391 (11.11) | 316 (8.97) | 330 (9.38) | 342 (9.72) | 268 (7.61) | 309 (8.78) | 248 (7.05) | 253 (7.18) | 243 (6.9) | 283 (8.04) | 265 (7.53) | 272(7.73) | 3520 (100) |
Total | 2854 | 2468 | 2628 | 2483 | 2408 | 2432 | 2664 | 2591 | 2377 | 2373 | 2456 | 2786 | 30,520 |
Mean | 357 | 309 | 329 | 310 | 301 | 304 | 333 | 324 | 297 | 297 | 307 | 348 | 3815 |
SD | 46 | 56 | 72 | 49 | 44 | 53 | 82 | 79 | 83 | 88 | 69 | 76 | 648 |
Year | Fatalities | Injuries |
---|---|---|
2009 | 1145 | 5029 |
2010 | 995 | 4512 |
2011 | 1058 | 5267 |
2012 | 1222 | 6674 |
2013 | 998 | 5665 |
2014 | 1252 | 6082 |
2015 | 1229 | 5822 |
2016 | 1214 | 5247 |
Total | 9113 | 44,298 |
Mean | 1139 | 5537 |
SD | 107 | 671 |
Year | Abqaiq | Al-Ahsa | Al-Khobar | Al-Naimiyah | Dammam | Dhahran | Hafr Al-Batin | Jubail | Khafji | Qatif | Ras Tanura | Total Crashes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2009 | 115 (3.55) | 712 (21.96) | 139 (4.29) | 117 (3.61) | 505 (15.58) | 194 (5.98) | 522 (16.1) | 298 (9.19) | 102 (3.15) | 443 (13.66) | 95 (2.93) | 3242 (100) |
2010 | 97 (3.36) | 714 (24.74) | 234 (8.11) | 81 (2.81) | 411 (14.24) | 57 (1.98) | 504 (17.46) | 284 (9.84) | 93 (3.22) | 335 (11.61) | 76 (2.63) | 2886 (100) |
2011 | 259 (7.41) | 922 (26.39) | 193 (5.52) | 91 (2.6) | 649 (18.57) | 114 (3.26) | 522 (14.94) | 358 (10.25) | 90 (2.58) | 204 (5.85) | 92 (2.63) | 3494 (100) |
2012 | 188 (3.83) | 1550 (31.54) | 368 (7.49) | 137 (2.79) | 807 (16.42) | 429 (8.73) | 437 (8.89) | 529 (10.77) | 95 (1.93) | 236 (4.8) | 138 (2.81) | 4914 (100) |
2013 | 149 (3.54) | 1031 (24.52) | 327 (7.78) | 158 (3.76) | 836 (19.89) | 368 (8.75) | 433 (10.3) | 364 (8.66) | 94 (2.24) | 400 (9.51) | 44 (1.05) | 4204 (100) |
2014 | 144 (3.45) | 1806 (43.28) | 231 (5.54) | 116 (2.78) | 534 (12.8) | 345 (8.27) | 342 (8.2) | 295 (7.07) | 62(1.49) | 266 (6.36) | 32 (0.76) | 4173 (100) |
2015 | 202 (4.94) | 1708 (41.79) | 209 (5.11) | 134 (3.28) | 564 (13.8) | 262 (6.41) | 352 (8.61) | 230 (5.63) | 91 (2.23) | 251 (6.14) | 84(2.06) | 4087 (100) |
2016 | 123 (3.49) | 1293 (36.73) | 191 (5.43) | 131 (3.72) | 586 (16.65) | 288 (8.18) | 343 (9.74) | 196 (5.57) | 53 (1.51) | 234 (6.65) | 82 (2.33) | 3520 (100) |
Total | 1277 | 9736 | 1892 | 965 | 4892 | 2057 | 3455 | 2554 | 680 | 2369 | 643 | 30,520 |
Mean | 160 | 1217 | 237 | 121 | 612 | 257 | 432 | 319 | 85 | 296 | 80 | 3815 |
SD | 54 | 437 | 75 | 25 | 147 | 128 | 79 | 102 | 18 | 87 | 32 | 648 |
Year | Abqaiq | Al-Ahsa | Al-Khobar | Al-Naimiyah | Dammam | Dhahran | Hafr Al-Batin | Jubail | Khafji | Qatif | Ras Tanura |
---|---|---|---|---|---|---|---|---|---|---|---|
2009 | 146.2 | 30 | 8.1 | 147.1 | 12.3 | 87.1 | 43.8 | 35.8 | 81.3 | 18.4 | 21.1 |
2010 | 135.2 | 26.2 | 10.4 | 84.9 | 7.7 | 29.7 | 49.9 | 31.4 | 64.9 | 15.1 | 9.8 |
2011 | 125.5 | 28.9 | 9.6 | 78.2 | 11.5 | 33.8 | 41.6 | 42.5 | 64.6 | 12.7 | 9.5 |
2012 | 87.7 | 31.5 | 9.3 | 112.3 | 12.8 | 146.3 | 40.6 | 38 | 74.1 | 7.9 | 20 |
2013 | 119 | 24.3 | 7.3 | 75.9 | 7.4 | 91.2 | 34.2 | 30.2 | 86.9 | 12.2 | 20.9 |
2014 | 108.3 | 37.7 | 5.9 | 88.3 | 11.4 | 72.9 | 43.2 | 33.3 | 54.7 | 11.9 | 10.1 |
2015 | 155.7 | 27.7 | 7.8 | 90.2 | 10.1 | 81.9 | 49.2 | 29.9 | 59.1 | 10.5 | 12.7 |
2016 | 117.5 | 27.5 | 7 | 100 | 8.6 | 73 | 43.9 | 24.6 | 46.7 | 11.5 | 8.2 |
Mean | 124.4 | 29.2 | 8.2 | 97.1 | 10.2 | 77 | 43.3 | 33.2 | 66.5 | 12.5 | 14 |
Variable Name | Variable Type | Variable Description |
---|---|---|
Driver Related Factors | ||
Sleep | Categorical | 1 = Sleep; otherwise = 0 |
Distractions | Categorical | 1 = Distractions; otherwise = 0 |
Speeding | Categorical | 1 = Speeding; otherwise = 0 |
Exhaustion | Categorical | 1 = Exhaustion; otherwise = 0 |
Alcohol use | Categorical | 1 = Alcohol use; otherwise = 0 |
Accident Type | ||
Hit a moving vehicle | Categorical | 1 = Hit a moving vehicle; otherwise = 0 |
Hit an animal | Categorical | 1 = Hit an animal; Otherwise = 0 |
Hit a road fence | Categorical | 1 = Hit a road fence; otherwise = 0 |
Hit an electric pole | Categorical | 1 = Hit an electric pole; otherwise = 0 |
Hit a side barrier | Categorical | 1 = Hit a side barrier; otherwise = 0 |
Hit a parked vehicle | Categorical | 1 = Hit a parked vehicle; otherwise = 0 |
Hit a motorcycle | Categorical | 1 = Hit a motorcycle; otherwise = 0 |
Hit a pedestrian | Categorical | 1 = Runover; otherwise = 0 |
Hit a tree | Categorical | 1 = Hit a tree; otherwise = 0 |
Accident Reason | ||
Violate red signal | Categorical | 1 = Override the red signal; otherwise = 0 |
Sudden lane deviation | Categorical | 1 = Sudden lane deviation; otherwise = 0 |
Violate stop sign | Categorical | 1 = Violate stop sign; otherwise = 0 |
Not giving way | Categorical | 1 = Do not give priority; otherwise = 0 |
Vehicle drift | Categorical | 1 = Drift; otherwise = 0 |
Not enough space | Categorical | 1 = Not enough space; otherwise = 0 |
Violation of pedestrian signal | Categorical | 1 = Violation of pedestrian signal; otherwise = 0 |
Slipping | Categorical | 1 = slipping; otherwise = 0 |
Absence of warning signs | Categorical | 1 = Lack of warning signs; otherwise = 0 |
No signal | Categorical | 1 = No signal; otherwise = 0 |
Faulty tires | Categorical | 1 = Faulty tires; otherwise = 0 |
Faulty steering wheel | Categorical | 1 = Faulty tires; otherwise = 0 |
Engine combustion | Categorical | 1 = Faulty tires; otherwise = 0 |
Overloading | Categorical | 1 = Overloading; otherwise = 0 |
Lighting Condition | ||
Day | Categorical | 1 = Day; otherwise = 0 |
Night | Categorical | 1 = Night; otherwise = 0 |
Weather | ||
Clear | Categorical | 1 = Clear; otherwise = 0 |
Cloudy | Categorical | 1 = Cloudy; otherwise = 0 |
Rainy | Categorical | 1 = Rainy; otherwise = 0 |
Dusty | Categorical | 1 = Dust; otherwise = 0 |
Explanatory Variable | Coefficient β | Standard Error. | Wald Statistic | Significance * p-Value | Odds Ratio |
---|---|---|---|---|---|
Driver Characteristics | |||||
Sleep | 1.023 | 0.42 | 5.982 | 0.01 | 2.781 |
Distractions | 0.327 | 0.105 | 9.683 | 0.002 | 1.387 |
Speeding | 0.676 | 0.09 | 62.724 | 0.001 | 1.966 |
Crash Type | |||||
Hit a moving vehicle | 0.564 | 0.06 | 93.724 | 0.02 | 1.757 |
Hit a road fence | 0.723 | 0.16 | 21.548 | 0.03 | 2.06 |
Hit an electric pole | 0.784 | 0.23 | 11.227 | 0.01 | 2.19 |
Hit a pedestrian | 1.865 | 0.26 | 50.675 | 0.02 | 6.457 |
Hit a motorcycle | 1.289 | 0.67 | 3.694 | 0.004 | 3.628 |
Crash Reason | |||||
Violate red signal | −1.572 | 0.381 | 16.985 | 0.02 | 0.208 |
Sudden lane deviation | 0.242 | 0.085 | 8.084 | 0.004 | 1.273 |
Weather | |||||
Rainy | −2.532 | 1.112 | 5.182 | 0.003 | 0.079 |
Constant | −5.938 | 0.48 | 155.86 | 0 | 0.003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamal, A.; Rahman, M.T.; Al-Ahmadi, H.M.; Mansoor, U. The Dilemma of Road Safety in the Eastern Province of Saudi Arabia: Consequences and Prevention Strategies. Int. J. Environ. Res. Public Health 2020, 17, 157. https://doi.org/10.3390/ijerph17010157
Jamal A, Rahman MT, Al-Ahmadi HM, Mansoor U. The Dilemma of Road Safety in the Eastern Province of Saudi Arabia: Consequences and Prevention Strategies. International Journal of Environmental Research and Public Health. 2020; 17(1):157. https://doi.org/10.3390/ijerph17010157
Chicago/Turabian StyleJamal, Arshad, Muhammad Tauhidur Rahman, Hassan M. Al-Ahmadi, and Umer Mansoor. 2020. "The Dilemma of Road Safety in the Eastern Province of Saudi Arabia: Consequences and Prevention Strategies" International Journal of Environmental Research and Public Health 17, no. 1: 157. https://doi.org/10.3390/ijerph17010157
APA StyleJamal, A., Rahman, M. T., Al-Ahmadi, H. M., & Mansoor, U. (2020). The Dilemma of Road Safety in the Eastern Province of Saudi Arabia: Consequences and Prevention Strategies. International Journal of Environmental Research and Public Health, 17(1), 157. https://doi.org/10.3390/ijerph17010157