From CT Imaging to 3D Representations: Digital Modelling of Fibre-Reinforced Adhesives with Image-Based FEM
Abstract
1. Introduction
2. Materials
2.1. Specimens for 2D Analysis
2.2. Specimens for 3D Analysis
3. Methods
3.1. CT Image Processing and Segmentation
3.2. Meshing and Reconstruction
3.3. Finite Element Model Setup
4. Results
4.1. Fibre Orientation Analysis
4.2. Two-Dimensional FEM Models from CT Slices
4.3. Three-Dimensional Voxel-Based FEM Models
4.4. Computational Performance and Reproducibility
5. Discussion, Limitations, and Future Work
6. Conclusions
- High-resolution µCT imaging combined with automated denoising, segmentation, and convexity-based fibre separation enabled accurate quantification of fibre volume fraction, orientation, and clustering.
- Two-dimensional slice-based FEM provided computationally efficient insights into fibre orientation effects, capturing interfacial stress amplification and the influence of clustering on matrix hotspot formation.
- Three-dimensional voxel-based FEM simulations under inhomogeneous uniaxial extension and clockwise torsion at reproduced anisotropic stiffness behaviour and revealed shear-dominated load paths, with local von Mises stresses up to 70 MPa.
- Fibre alignment along the loading axis enhanced stiffness and fibre load sharing, whereas isotropic regions carried reduced fibre stress and exhibited matrix-dominated shear, underscoring the role of microstructural heterogeneity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adams, R.D.; Comyn, J.; Wake, W.C. Structural Adhesive Joints in Engineering; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Da Silva, L.F.; Öchsner, A.; Adams, R.D. Handbook of Adhesion Technology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kuhn, M.; Manousides, N.; Antoniou, A.; Balzani, C. Fatigue properties of a structural rotor blade adhesive under axial and torsional loading. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1121–1139. [Google Scholar] [CrossRef]
- Cassano, A.G.; Dev, S.; Maiaru, M.; Hansen, C.J.; Stapleton, S.E. Cure simulations of thick adhesive bondlines for wind energy applications. J. Appl. Polym. Sci. 2021, 138, 49989. [Google Scholar] [CrossRef]
- Subrahmanian, K.; Dubouloz, F. Adhesives for bonding wind turbine blades. Reinf. Plast. 2009, 53, 26–29. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, W.; Xin, S.; Sun, L. A review of applications of CT imaging on fiber reinforced composites. J. Compos. Mater. 2022, 56, 133–164. [Google Scholar] [CrossRef]
- Tamta, N. Advanced Characterization Techniques for Polymer Composites. In Advances in Polymer Composite Research; CRC Press: Boca Raton, FL, USA, 2025; pp. 116–140. [Google Scholar]
- Eberhardt, C.; Clarke, A. Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography. J. Microsc. 2002, 206, 41–53. [Google Scholar] [CrossRef]
- Sandau, K.; Ohser, J. The chord length transform and the segmentation of crossing fibres. J. Microsc. 2007, 226, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Viguié, J.; Latil, P.; Orgéas, L.; Dumont, P.; Du Roscoat, S.R.; Bloch, J.F.; Marulier, C.; Guiraud, O. Finding fibres and their contacts within 3D images of disordered fibrous media. Compos. Sci. Technol. 2013, 89, 202–210. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, X.; Zhou, W.; Li, J. Three-dimensional reconstruction and morphologic characteristics of porous metal fiber sintered sheet. Mater. Charact. 2013, 86, 49–58. [Google Scholar] [CrossRef]
- Tsarouchas, D.; Markaki, A. Extraction of fibre network architecture by X-ray tomography and prediction of elastic properties using an affine analytical model. Acta Mater. 2011, 59, 6989–7002. [Google Scholar] [CrossRef]
- Martin-Herrero, J.; Germain, C. Microstructure reconstruction of fibrous C/C composites from X-ray microtomography. Carbon 2007, 45, 1242–1253. [Google Scholar] [CrossRef]
- Agyei, R.F.; Sangid, M.D. A supervised iterative approach to 3D microstructure reconstruction from acquired tomographic data of heterogeneous fibrous systems. Compos. Struct. 2018, 206, 234–246. [Google Scholar] [CrossRef]
- Bostanabad, R.; Zhang, Y.; Li, X.; Kearney, T.; Brinson, L.C.; Apley, D.W.; Liu, W.K.; Chen, W. Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques. Prog. Mater. Sci. 2018, 95, 1–41. [Google Scholar] [CrossRef]
- Mishurova, T.; Rachmatulin, N.; Fontana, P.; Oesch, T.; Bruno, G.; Radi, E.; Sevostianov, I. Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite. Int. J. Eng. Sci. 2018, 122, 14–29. [Google Scholar] [CrossRef]
- Hematipour, M.; Dean, A.; Tariq, M.; Scheffler, S.; Rolfes, R. Experimental and numerical investigation of the mechanical behaviour of short fibre reinforced adhesives. In Proceedings of the 2024 ECCOMAS Congress, Lisboa, Portugal, 3–7 June 2024. [Google Scholar] [CrossRef]
- Gonzalez, R.C. Digital Image Processing; Pearson Education India: New Delhi, India, 2009. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE, San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Cantoni, V.; Mattia, E. Hough transform. In Encyclopedia of Systems Biology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 917–918. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 6, 679–698. [Google Scholar]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- Suzuki, S. Topological structural analysis of digitized binary images by border following. Comput. Vision Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [Google Scholar] [CrossRef]
- Snoeyink, J. Speeding up the Douglas-Peucker Line-Simplification Algorithm. Available online: https://www.uni-trier.de/fileadmin/fb4/prof/INF/DEA/Seminar0708/Hershberger-Snoeyink1.pdf (accessed on 15 September 2025).
- Delaunay, B. Sur la Sphère Vide. A la méMoire de Georges Voronoï; Bulletin de l’Académie des Sciences de l’Union des Républiques Soviétiques Socialistes. VII série; Classe des Sciences mathéMatiques et Naturelles: Moscow, Russia, 1934; Volume 6, pp. 793–800. Available online: https://www.mathnet.ru/links/463e52ef797da0634e88879812e91fe1/im4937.pdf (accessed on 16 September 2025).
- Lee, D.T.; Schachter, B.J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 1980, 9, 219–242. [Google Scholar] [CrossRef]
- Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.E.; Wells, G.N. The FEniCS project version 1.5. Arch. Numer. Softw. 2015, 3, 9–23. [Google Scholar]
- Holst, T.; Antoniou, A.; Englisch, N.; Manousides, N.; Balzani, C. On the estimation of short fiber orientation in a filled epoxy adhesive and its effect on the tensile strength. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1922. [Google Scholar]
- Squillacote, A.H.; Ahrens, J.; Law, C.; Geveci, B.; Moreland, K.; King, B. The Paraview Guide; Kitware: Clifton Park, NY, USA, 2007; Volume 366. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Gao, K.; Gao, Y.; He, H.; Lu, D.; Xu, L.; Li, J. Nerf: Neural radiance field in 3d vision, a comprehensive review. arXiv 2022, arXiv:2210.00379. [Google Scholar]
- Sheibanifard, A.; Yu, H. A novel implicit neural representation for volume data. Appl. Sci. 2023, 13, 3242. [Google Scholar] [CrossRef]
- Matiunina, D. NeRF Applications in Medical Imaging. Available online: https://collab.dvb.bayern/spaces/TUMdlma/pages/73379831/NeRF+Applications+in+Medical+Imaging (accessed on 15 September 2025).
- Zhou, L.; Fang, C.; Morovati, B.; Liu, Y.; Han, S.; Xu, Y.; Yu, H. ρ-NeRF: Leveraging attenuation priors in neural radiance field for 3D computed tomography reconstruction. In Proceedings of the 2025 IEEE International Conference on Image Processing (ICIP), IEEE, Anchorage, AK, USA, 14–18 September 2025; pp. 1636–1641. [Google Scholar]














| Processing Step | Time [s] | Memory [MB] |
|---|---|---|
| Raw CT Image → Binary Image | 0.37 | 183 |
| Binary Image → Mesh | 3.16 | 263 |
| Mesh → FEM Results (0.35% and 0.5%) | 9.87 | 512 |
| Results → Visualisation | 6.73 | 410 |
| Visualisation → Dataset Format | 8.81 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.W.; Xu, K.; Manousides, N.; Balzani, C. From CT Imaging to 3D Representations: Digital Modelling of Fibre-Reinforced Adhesives with Image-Based FEM. Adhesives 2025, 1, 14. https://doi.org/10.3390/adhesives1040014
Khan AW, Xu K, Manousides N, Balzani C. From CT Imaging to 3D Representations: Digital Modelling of Fibre-Reinforced Adhesives with Image-Based FEM. Adhesives. 2025; 1(4):14. https://doi.org/10.3390/adhesives1040014
Chicago/Turabian StyleKhan, Abdul Wasay, Kaixin Xu, Nikolas Manousides, and Claudio Balzani. 2025. "From CT Imaging to 3D Representations: Digital Modelling of Fibre-Reinforced Adhesives with Image-Based FEM" Adhesives 1, no. 4: 14. https://doi.org/10.3390/adhesives1040014
APA StyleKhan, A. W., Xu, K., Manousides, N., & Balzani, C. (2025). From CT Imaging to 3D Representations: Digital Modelling of Fibre-Reinforced Adhesives with Image-Based FEM. Adhesives, 1(4), 14. https://doi.org/10.3390/adhesives1040014

