Utilization, Expenditure, and Price Trends of Nonbiologic and Biologic Disease-Modifying Antirheumatic Drugs in the US Medicaid Programs: An Empirical Data Analysis of over Three Decades †
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Source and Variables/Drugs
2.3. Analysis
3. Results
3.1. Utilization and Expenditure
3.1.1. Conventional Synthetic DMARDs vs. Janus Kinase Inhibitors
3.1.2. Reference Biologics and Biosimilar Agents
3.2. Unit and Prescription Price
3.2.1. Conventional Synthetic DMARDs
3.2.2. Janus Kinase Inhibitors
3.2.3. Biologic DMARDs and Biosimilar Agents
3.3. Market Share
4. Discussion
4.1. csDMARDs vs. JAKi
4.2. Adalimumab
4.3. Biologics vs. Biosimilars
4.4. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Number of Prescriptions (Total Utilization) | Spending, Current-Year US$ (Total Expenditure) | ||
---|---|---|---|---|
Reference Biologics | Biosimilar Agents | Reference Biologics | Biosimilar Agents | |
1998 | 124 | - | 212,559.77 | - |
1999 | 1049 | - | 1,439,812.76 | - |
2000 | 2661 | - | 3,966,370.51 | - |
2001 | 4356 | - | 9,038,579.58 | - |
2002 | 8701 | - | 16,569,409.81 | - |
2003 | 14,722 | - | 27,777,921.73 | - |
2004 | 22,797 | - | 44,073,274.46 | - |
2005 | 25,674 | - | 50,653,964.68 | - |
2006 | 29,427 | - | 59,979,459.66 | - |
2007 | 29,427 | - | 69,304,954.63 | - |
2008 | 33,180 | - | 87,955,944.58 | - |
2009 | 42,181 | - | 119,382,987.29 | - |
2010 | 41,269 | - | 123,174,584.77 | - |
2011 | 54,825 | - | 170,016,949.23 | - |
2012 | 62,484 | - | 203,801,856.17 | - |
2013 | 62,209 | - | 216,315,757.93 | - |
2014 | 71,128 | - | 266,583,832.15 | - |
2015 | 81,671 | - | 327,026,108.16 | - |
2016 | 101,726 | - | 428,931,350.16 | - |
2017 | 98,034 | 1061 | 463,185,658.48 | 3,138,251.86 |
2018 | 94,262 | 4252 | 469,771,598.63 | 13,988,076.59 |
2019 | 88,598 | 10,467 | 394,737,512.19 | 28,829,903.89 |
2020 | 92,731 | 28,922 | 401,065,797.78 | 86,003,413.57 |
2021 | 85,198 | 56,253 | 331,955,213.66 | 158,222,887.22 |
2022 | 102,739 | 89,343 | 364,573,770.05 | 244,955,921.70 |
Total | 1,251,173 | 190,298 | 4,651,495,228.82 | 535,138,454.83 |
Year | Total Prescriptions | Total Reimbursement | ||
---|---|---|---|---|
Reference Biologics | Biosimilar Agents | Reference Biologics | Biosimilar Agents | |
1998 | 100% | 0% | 100% | 0% |
1999 | 100% | 0% | 100% | 0% |
2000 | 100% | 0% | 100% | 0% |
2001 | 100% | 0% | 100% | 0% |
2002 | 100% | 0% | 100% | 0% |
2003 | 100% | 0% | 100% | 0% |
2004 | 100% | 0% | 100% | 0% |
2005 | 100% | 0% | 100% | 0% |
2006 | 100% | 0% | 100% | 0% |
2007 | 100% | 0% | 100% | 0% |
2008 | 100% | 0% | 100% | 0% |
2009 | 100% | 0% | 100% | 0% |
2010 | 100% | 0% | 100% | 0% |
2011 | 100% | 0% | 100% | 0% |
2012 | 100% | 0% | 100% | 0% |
2013 | 100% | 0% | 100% | 0% |
2014 | 100% | 0% | 100% | 0% |
2015 | 100% | 0% | 100% | 0% |
2016 | 100% | 0% | 100% | 0% |
2017 | 99% | 1% | 99% | 1% |
2018 | 96% | 4% | 97% | 3% |
2019 | 89% | 11% | 93% | 7% |
2020 | 76% | 24% | 82% | 18% |
2021 | 60% | 40% | 68% | 32% |
2022 | 53% | 47% | 60% | 40% |
Average | 95% | 5% | 96% | 4% |
References
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef] [PubMed]
- Marita, C.; Emma, S.; Damian, H.; Loreto, C.; Frederick, W.; Theo, V.; Benjamin, W.; Sherine, G.; Marissa, L.; Nicole, J.; et al. The global burden of rheumatoid arthritis: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1316. [Google Scholar]
- Helmick, C.G.; Felson, D.T.; Lawrence, R.C.; Gabriel, S.; Hirsch, R.; Kwoh, C.K.; Liang, M.H.; Kremers, H.M.; Mayes, M.D.; Merkel, P.A.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 2008, 58, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Mota, L.M.; Laurindo, I.M.; Santos Neto, L.L. General principles for treatment of early rheumatoid arthritis. Rev. Assoc. Med. Bras. (1992) 2010, 56, 360–362. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef]
- Ruderman, E.M. Overview of safety of non-biologic and biologic DMARDs. Rheumatology 2012, 51 (Suppl. S6), vi37–vi43. [Google Scholar] [CrossRef]
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef]
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St. Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res. (2010) 2021, 73, 924–939. [Google Scholar] [CrossRef]
- IQVIA. The Use of Medicines in the U.S. 2023; IQVIA Institute for Human Data Science: Parsippany, NJ, USA, 2023. [Google Scholar]
- Hsieh, P.-H.; Wu, O.; Geue, C.; McIntosh, E.; McInnes, I.B.; Siebert, S. Economic burden of rheumatoid arthritis: A systematic review of literature in biologic era. Ann. Rheum. Dis. 2020, 79, 771. [Google Scholar] [CrossRef]
- Hresko, A.; Lin, T.C.; Solomon, D.H. Medical Care Costs Associated With Rheumatoid Arthritis in the US: A Systematic Literature Review and Meta-Analysis. Arthritis Care Res. 2018, 70, 1431–1438. [Google Scholar] [CrossRef]
- Statista. Prescription Drug Expenditure in the United States from 1960 to 2020. Available online: https://www.statista.com/statistics/184914/prescription-drug-expenditures-in-the-us-since-1960 (accessed on 16 March 2022).
- Centers for Medicare & Medicaid Services. State Drug Utilization Data. Available online: https://www.cms.gov (accessed on 16 July 2022).
- Yue, X.; Guo, J.J.; Wigle, P.R. Trends in utilization, spending, and prices of smoking-cessation medications in medicaid programs: 25 years empirical data analysis, 1991–2015. Am. Health Drug Benefits 2018, 11, 275–284. [Google Scholar] [PubMed]
- Hennekens, C.H.; Rane, M.; Solano, J.; Alter, S.; Johnson, H.; Krishnaswamy, S.; Shih, R.; Maki, D.; DeMets, D.L. Updates on Hydroxychloroquine in Prevention and Treatment of COVID-19. Am. J. Med. 2022, 135, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Emery, P.; Breedveld, F.C.; Lemmel, E.M.; Kaltwasser, J.P.; Dawes, P.T.; Gömör, B.; Van Den Bosch, F.; Nordström, D.; Bjorneboe, O.; Dahl, R.; et al. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. Rheumatology 2000, 39, 655–665. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Drug Safety Communication: New Boxed Warning for Severe Liver Injury with Arthritis Drug Arava (Leflunomide). Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/fda-drug-safety-communication-new-boxed-warning-severe-liver-injury-arthritis-drug-arava-leflunomide#Additional_Information_for_Healthcare_Professionals (accessed on 19 October 2023).
- New boxed warning for leflunomide. React. Wkly. 2010, 1311, 6.
- Cubanski, J.; Damico, A.; Neuman, T. 10 Things to Know About Medicare Part D Coverage and Costs in 2019. Available online: https://www.kff.org/medicare/issue-brief/10-things-to-know-about-medicare-part-d-coverage-and-costs-in-2019/ (accessed on 19 June 2023).
- Radu, A.F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Coricello, A.; Mesiti, F.; Lupia, A.; Maruca, A.; Alcaro, S. Inside Perspective of the Synthetic and Computational Toolbox of JAK Inhibitors: Recent Updates. Molecules 2020, 25, 3321. [Google Scholar] [CrossRef]
- Markham, A. Baricitinib: First Global Approval. Drugs 2017, 77, 697–704. [Google Scholar] [CrossRef]
- Duggan, S.; Keam, S.J. Upadacitinib: First Approval. Drugs 2019, 79, 1819–1828. [Google Scholar] [CrossRef]
- Baumgart, D.C.; Misery, L.; Naeyaert, S.; Taylor, P.C. Biological Therapies in Immune-Mediated Inflammatory Diseases: Can Biosimilars Reduce Access Inequities? Front. Pharmacol. 2019, 10, 279. [Google Scholar] [CrossRef]
- Mulcahy, A.W.; Hlavka, J.P.; Case, S.R. Biosimilar Cost Savings in the United States: Initial Experience and Future Potential. Rand Health Q. 2018, 7, 3. [Google Scholar]
- Roberts, E.T.; Li, J.; Bansback, N.; Tseng, C.W.; Shiboski, S.; Schmajuk, G.; Yazdany, J. Patterns of Infliximab Biosimilar Uptake for Medicare, Medicaid, and Private Insurance from 2016 to 2022. Arthritis Rheumatol. 2024, 76, 1739–1742. [Google Scholar] [CrossRef] [PubMed]
- Qian, J. Uptake of Rituximab Biosimilars in Medicare and Medicaid in 2019–2022. Am. J. Manag. Care 2024, 30, e359–e363. [Google Scholar]
- Cross, R.K.; Stewart, A.L.; Edgerton, C.C.; Shah, B.; Welz, J.A.; Kay, J. Implementation Strategies of Biosimilars in Healthcare Systems: The Path Forward. Am. Health Drug Benefits 2022, 15, 45–53. [Google Scholar]
- Menditto, E.; Orlando, V.; Coretti, S.; Putignano, D.; Fiorentino, D.; Ruggeri, M. Doctors commitment and long-term effectiveness for cost containment policies: Lesson learned from biosimilar drugs. Clinicoecon. Outcomes Res. 2015, 7, 575–581. [Google Scholar] [PubMed]
- Leonard, E.; Wascovich, M.; Oskouei, S.; Gurz, P.; Carpenter, D. Factors Affecting Health Care Provider Knowledge and Acceptance of Biosimilar Medicines: A Systematic Review. J. Manag. Care Spec. Pharm. 2019, 25, 102–112. [Google Scholar] [CrossRef]
Nonbiologic | Brand Agent | Initial FDA Approval Date | Generic Agent * | Initial FDA Approval Date |
---|---|---|---|---|
csDMARDs | Methotrexate | 3 March 1982 | Trexall | 21 March 2001 |
Otrexup | 11 October 2013 | |||
Rasuvo | 11 July 2014 | |||
Xatmep | 25 April 2017 | |||
Reditrex | 27 November 2019 | |||
Leflunomide (Arava®) | 10 September 1998 | NA | ||
JAKi | Tofacitinib (Xeljanz®) | 6 November 2012 | ||
Baricitinib (Olumiant®) | 1 June 2018 | |||
Upadacitinib (Rinvoq®) | 16 August 2019 | |||
Biologic | Reference Drug | Initial FDA Approval Date | Biosimilar Agent * | Initial FDA Approval Date |
TNFi | Infliximab (Remicade®) | 24 August 1998 | Inflectra | April 2016 |
Renflexis | May 2017 | |||
Avsola | December 2019 | |||
Etanercept (Enbrel®) | 2 November 1998 | NA | ||
Adalimumab (Humira®) | 31 December 2002 | |||
Certolizumab pegol (Cimzia®) | 22 April 2008 | |||
Golimumab (Simponi®) | 24 April 2009 | |||
Other bDMARDs | Rituximab (Rituxan®) | 26 November 1997 | Truxima | November 2018 |
Ruxience | July 2019 | |||
Anakinra (Kineret®) | 14 November 2001 | NA | ||
Abatacept (Orencia®) | 23 December 2005 | |||
Tocilizumab (Actemra®) | 8 January 2010 | |||
Sarilumab (Kevzara®) | 22 May 2017 |
Year/DMARDs | Number of Prescriptions (Total Utilization) | Spending, Current-Year US$ (Total Expenditure) | ||
---|---|---|---|---|
Nonbiologic | Biologics | Nonbiologic | Biologics | |
1991 | 78,839 | - | 4,333,028.49 | - |
1992 | 103,650 | - | 5,652,523.56 | - |
1993 | 131,888 | - | 7,233,857.57 | - |
1994 | 139,790 | - | 7,539,623.18 | - |
1995 | 157,287 | - | 8,579,052.69 | - |
1996 | 179,718 | - | 9,203,764.64 | - |
1997 | 196,256 | - | 7,859,720.28 | - |
1998 | 213,845 | 587 | 9,704,656.82 | 585,354.01 |
1999 | 278,890 | 34,023 | 24,663,575.15 | 31,538,091.58 |
2000 | 335,641 | 64,574 | 34,358,928.37 | 62,800,188.24 |
2001 | 418,926 | 75,251 | 47,454,726.76 | 79,583,920.48 |
2002 | 463,657 | 80,781 | 48,781,195.70 | 93,427,121.21 |
2003 | 492,498 | 130,042 | 49,974,238.97 | 158,433,157.10 |
2004 | 519,132 | 191,259 | 59,678,563.80 | 257,082,305.25 |
2005 | 492,330 | 211,862 | 57,186,685.62 | 304,236,668.63 |
2006 | 349,436 | 178,252 | 31,509,994.88 | 289,630,696.26 |
2007 | 349,436 | 180,178 | 31,509,994.88 | 290,883,671.60 |
2008 | 206,543 | 149,582 | 5,833,304.14 | 279,922,908.98 |
2009 | 215,563 | 168,857 | 5,433,291.77 | 339,234,346.23 |
2010 | 251,138 | 186,689 | 5,379,787.62 | 390,476,082.97 |
2011 | 402,279 | 283,642 | 10,435,739.87 | 627,557,535.16 |
2012 | 430,661 | 317,467 | 8,976,849.06 | 756,898,387.58 |
2013 | 440,669 | 337,183 | 21,529,840.35 | 882,589,924.24 |
2014 | 533,832 | 407,458 | 40,023,662.09 | 1,209,731,951.66 |
2015 | 665,194 | 507,018 | 63,176,807.25 | 1,751,626,359.64 |
2016 | 750,341 | 615,645 | 95,775,765.21 | 2,534,754,142.86 |
2017 | 787,020 | 649,635 | 118,479,714.28 | 3,025,503,462.24 |
2018 | 791,843 | 687,054 | 141,855,747.31 | 3,321,235,137.80 |
2019 | 776,081 | 702,799 | 200,807,006.70 | 3,728,726,406.41 |
2020 | 827,982 | 619,393 | 295,707,081.26 | 4,583,555,222.69 |
2021 | 884,352 | 688,660 | 404,414,695.19 | 5,820,387,093.03 |
2022 | 1,257,258 | 1,508,145 | 674,320,409.37 | 9,954,703,146.53 |
Total | 14,121,976 | 8,976,036 | 2,537,373,832.83 | 40,775,103,282.38 |
Grand total | 23,098,012 | 43,312,477,115.21 |
Year/DMARDs | Number of Prescriptions (Total Utilization) | Spending, Current-Year US$ (Total Expenditure) | ||
---|---|---|---|---|
csDMARDs | JAKi | csDMARDs | JAKi | |
1991 | 78,839 | - | 4,333,028.49 | - |
1992 | 103,650 | - | 5,652,523.56 | - |
1993 | 131,888 | - | 7,233,857.57 | - |
1994 | 139,790 | - | 7,539,623.18 | - |
1995 | 157,287 | - | 8,579,052.69 | - |
1996 | 179,718 | - | 9,203,764.64 | - |
1997 | 196,256 | - | 7,859,720.28 | - |
1998 | 213,845 | - | 9,704,656.82 | - |
1999 | 278,890 | - | 24,663,575.15 | - |
2000 | 335,641 | - | 34,358,928.37 | - |
2001 | 418,926 | - | 47,454,726.76 | - |
2002 | 463,657 | - | 48,781,195.70 | - |
2003 | 492,498 | - | 49,974,238.97 | - |
2004 | 519,132 | - | 59,678,563.80 | - |
2005 | 492,330 | - | 57,186,685.62 | - |
2006 | 349,436 | - | 31,509,994.88 | - |
2007 | 349,436 | - | 31,509,994.88 | - |
2008 | 206,543 | - | 5,833,304.14 | - |
2009 | 215,563 | - | 5,433,291.77 | - |
2010 | 251,138 | - | 5,379,787.62 | - |
2011 | 402,279 | - | 10,435,739.87 | - |
2012 | 430,657 | 4 | 8,968,415.78 | 8433.28 |
2013 | 439,102 | 1567 | 18,349,642.30 | 3,180,198.05 |
2014 | 528,668 | 5164 | 28,312,851.80 | 11,710,810.29 |
2015 | 655,640 | 9554 | 36,520,353.75 | 26,656,453.50 |
2016 | 736,088 | 14,253 | 43,252,707.52 | 52,523,057.69 |
2017 | 766,516 | 20,504 | 41,801,519.12 | 76,678,195.16 |
2018 | 763,152 | 28,691 | 35,064,968.20 | 106,790,779.11 |
2019 | 736,632 | 39,449 | 32,633,111.41 | 168,173,895.29 |
2020 | 770,680 | 57,302 | 31,890,075.52 | 263,817,005.74 |
2021 | 809,352 | 75,000 | 32,866,707.34 | 371,547,987.85 |
2022 | 1,139,225 | 118,033 | 45,331,849.57 | 628,988,559.80 |
Total | 13,752,455 | 369,521 | 827,298,457.07 | 1,710,075,375.76 |
Grand Total | 14,121,976 | 2,537,373,832.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, Z.A.; Yue, X.; Guo, J.J. Utilization, Expenditure, and Price Trends of Nonbiologic and Biologic Disease-Modifying Antirheumatic Drugs in the US Medicaid Programs: An Empirical Data Analysis of over Three Decades. J. Pharm. BioTech Ind. 2025, 2, 7. https://doi.org/10.3390/jpbi2020007
Alqahtani ZA, Yue X, Guo JJ. Utilization, Expenditure, and Price Trends of Nonbiologic and Biologic Disease-Modifying Antirheumatic Drugs in the US Medicaid Programs: An Empirical Data Analysis of over Three Decades. Journal of Pharmaceutical and BioTech Industry. 2025; 2(2):7. https://doi.org/10.3390/jpbi2020007
Chicago/Turabian StyleAlqahtani, Zuhair A., Xiaomeng Yue, and Jeff J. Guo. 2025. "Utilization, Expenditure, and Price Trends of Nonbiologic and Biologic Disease-Modifying Antirheumatic Drugs in the US Medicaid Programs: An Empirical Data Analysis of over Three Decades" Journal of Pharmaceutical and BioTech Industry 2, no. 2: 7. https://doi.org/10.3390/jpbi2020007
APA StyleAlqahtani, Z. A., Yue, X., & Guo, J. J. (2025). Utilization, Expenditure, and Price Trends of Nonbiologic and Biologic Disease-Modifying Antirheumatic Drugs in the US Medicaid Programs: An Empirical Data Analysis of over Three Decades. Journal of Pharmaceutical and BioTech Industry, 2(2), 7. https://doi.org/10.3390/jpbi2020007