Adapting the Illumina COVIDSeq for Whole Genome Sequencing of Other Respiratory Viruses in Multiple Workflows and a Single Rapid Workflow
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Ribonucleic Acid (RNA) Extraction
2.3. cDNA Synthesis and Amplification
2.4. Library Preparation and Sequencing
2.4.1. Multiple Workflows on Positive Controls
2.4.2. Rapid Combined Workflow on Positive Controls
2.5. Sequence Quality Metrics
2.6. Genome Coverage
2.7. Mutation Analysis
3. Results
3.1. Sequence Quality Metrics
3.2. Genome Coverage
3.3. Species Assignment
3.4. Mutation Analysis
3.5. Comparison of the Cost of Quality Control Reagents Between the Rapid and the Multiple Workflow in USD
3.6. Comparison Between the Processing Time Using the Multiple and Rapid Workflows
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADV | Adenovirus |
ALRI | Acute Lower Respiratory Infection |
ARI | Acute Respiratory Infection |
BREC | Biomedical Research Ethics Committee |
cDNA | Complementary DNA |
COVID-19 | Coronavirus Disease 2019 |
DNA | Deoxyribonucleic Acid |
dsDNA | Double-Stranded DNA |
FluA | Influenza A |
FluB | Influenza B |
HIV | Human Immunodeficiency Virus |
HR | Human Rhinovirus |
ILI | Influenza-Like Illness |
KRISP | KwaZulu-Natal Research Innovation and Sequencing Platform |
MUSCLE | Multiple Sequence Comparison by Log-Expectation |
NCBI | National Center for Biotechnology Information |
NHLS | National Health Laboratory Service |
NICD | National Institute for Communicable Diseases |
PCR | Polymerase Chain Reaction |
PIV | Parainfluenza Virus |
PSP | Pneumonia Surveillance Programme |
RNA | Ribonucleic Acid |
RSV | Respiratory Syncytial Virus |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
UKZN | University of KwaZulu-Natal |
WGS | Whole Genome Sequencing |
WHO | World Health Organisation |
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 26 May 2025).
- Walker, G.J.; Stelzer-Braid, S.; Shorter, C.; Honeywill, C.; Wynn, M.; Willenborg, C.; Barnes, P.; Kang, J.; Pierse, N.; Crane, J. Viruses Associated with Acute Respiratory Infection in a Community-based Cohort of Healthy New Zealand Children. J. Med. Virol. 2022, 94, 454–460. [Google Scholar] [CrossRef]
- Charlton, C.L.; Babady, E.; Ginocchio, C.C.; Hatchette, T.F.; Jerris, R.C.; Li, Y.; Loeffelholz, M.; McCarter, Y.S.; Miller, M.B.; Novak-Weekley, S. Practical Guidance for Clinical Microbiology Laboratories: Viruses Causing Acute Respiratory Tract Infections. Clin. Microbiol. Rev. 2018, 32, e00042-18. [Google Scholar] [CrossRef]
- Arvia, R.; Corcioli, F.; Ciccone, N.; Della Malva, N.; Azzi, A. Detection of 12 Respiratory Viruses by Duplex Real Time PCR Assays in Respiratory Samples. Mol. Cell. Probes 2015, 29, 408–413. [Google Scholar] [CrossRef]
- O’Brien, K.L.; Baggett, H.C.; Brooks, W.A.; Feikin, D.R.; Hammitt, L.L.; Higdon, M.M.; Howie, S.R.; Knoll, M.D.; Kotloff, K.L.; Levine, O.S. Causes of Severe Pneumonia Requiring Hospital Admission in Children without HIV Infection from Africa and Asia: The PERCH Multi-Country Case-Control Study. Lancet 2019, 394, 757–779. [Google Scholar] [CrossRef]
- Nunes, M.C.; Kuschner, Z.; Rabede, Z.; Madimabe, R.; Van Niekerk, N.; Moloi, J.; Kuwanda, L.; Rossen, J.W.; Klugman, K.P.; Adrian, P.V. Clinical Epidemiology of Bocavirus, Rhinovirus, Two Polyomaviruses and Four Coronaviruses in HIV-Infected and HIV-Uninfected South African Children. PLoS ONE 2014, 9, e86448. [Google Scholar] [CrossRef]
- Feleszko, W.; Marengo, R.; Vieira, A.S.; Ratajczak, K.; Mayorga Butrón, J.L. Immunity-targeted Approaches to the Management of Chronic and Recurrent Upper Respiratory Tract Disorders in Children. Clin. Otolaryngol. 2019, 44, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Jain, S. Epidemiology of Viral Pneumonia. Clin. Chest Med. 2017, 38, 1–9. [Google Scholar] [CrossRef]
- Ferkol, T.; Schraufnagel, D. The Global Burden of Respiratory Disease. Ann. ATS 2014, 11, 404–406. [Google Scholar] [CrossRef]
- Respiratory Diseases and Meningitis—NICD. Available online: https://www.nicd.ac.za/about-us/respiratory-diseases-and-meningitis/ (accessed on 26 May 2025).
- Moyes, J.; Cohen, C.; Pretorius, M.; Groome, M.; von Gottberg, A.; Wolter, N.; Walaza, S.; Haffejee, S.; Chhagan, M.; Naby, F. Epidemiology of Respiratory Syncytial Virus–Associated Acute Lower Respiratory Tract Infection Hospitalizations among HIV-Infected and HIV-Uninfected South African Children, 2010–2011. J. Infect. Dis. 2013, 208, S217–S226. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Stelzer-Braid, S.; Scotch, M.; Rawlinson, W.D. Detection of Respiratory Viruses Directly from Clinical Samples Using Next-generation Sequencing: A Literature Review of Recent Advances and Potential for Routine Clinical Use. Rev. Med. Virol. 2022, 32, e2375. [Google Scholar] [CrossRef] [PubMed]
- Houldcroft, C.J.; Beale, M.A.; Breuer, J. Clinical and Biological Insights from Viral Genome Sequencing. Nat. Rev. Microbiol. 2017, 15, 183–192. [Google Scholar] [CrossRef]
- Greninger, A.L.; Naccache, S.N.; Messacar, K.; Clayton, A.; Yu, G.; Somasekar, S.; Federman, S.; Stryke, D.; Anderson, C.; Yagi, S.; et al. A Novel Outbreak Enterovirus D68 Strain Associated with Acute Flaccid Myelitis Cases in the USA (2012–14): A Retrospective Cohort Study. Lancet Infect. Dis. 2015, 15, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Greninger, A.L.; Zerr, D.M.; Qin, X.; Adler, A.L.; Sampoleo, R.; Kuypers, J.M.; Englund, J.A.; Jerome, K.R. Rapid Metagenomic Next-Generation Sequencing during an Investigation of Hospital-Acquired Human Parainfluenza Virus 3 Infections. J. Clin. Microbiol. 2017, 55, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Grad, Y.H.; Newman, R.; Zody, M.; Yang, X.; Murphy, R.; Qu, J.; Malboeuf, C.M.; Levin, J.Z.; Lipsitch, M.; DeVincenzo, J. Within-Host Whole-Genome Deep Sequencing and Diversity Analysis of Human Respiratory Syncytial Virus Infection Reveals Dynamics of Genomic Diversity in the Absence and Presence of Immune Pressure. J. Virol. 2014, 88, 7286–7293. [Google Scholar] [CrossRef]
- Parker, J.; Chen, J. Application of next Generation Sequencing for the Detection of Human Viral Pathogens in Clinical Specimens. J. Clin. Virol. 2017, 86, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.J.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S. Origins and Evolutionary Genomics of the 2009 Swine-Origin H1N1 Influenza A Epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef]
- Morris, D.H.; Gostic, K.M.; Pompei, S.; Bedford, T.; Łuksza, M.; Neher, R.A.; Grenfell, B.T.; Lässig, M.; McCauley, J.W. Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology. Trends Microbiol. 2018, 26, 102–118. [Google Scholar] [CrossRef]
- Rios-Guzman, E.; Simons, L.M.; Dean, T.J.; Agnes, F.; Pawlowski, A.; Alisoltanidehkordi, A.; Nam, H.H.; Ison, M.G.; Ozer, E.A.; Lorenzo-Redondo, R. Deviations in RSV Epidemiological Patterns and Population Structures in the United States Following the COVID-19 Pandemic. Nat. Commun. 2024, 15, 3374. [Google Scholar] [CrossRef]
- Pillay, S.; Giandhari, J.; Tegally, H.; Wilkinson, E.; Chimukangara, B.; Lessells, R.; Moosa, Y.; Mattison, S.; Gazy, I.; Fish, M. Whole Genome Sequencing of SARS-CoV-2: Adapting Illumina Protocols for Quick and Accurate Outbreak Investigation during a Pandemic. Genes 2020, 11, 949. [Google Scholar] [CrossRef]
- Alamri, A.M.; Alkhilaiwi, F.A.; Ullah Khan, N. Era of Molecular Diagnostics Techniques before and after the COVID-19 Pandemic. Curr. Issues Mol. Biol. 2022, 44, 4769–4789. [Google Scholar] [CrossRef]
- Davina-Nunez, C.; Perez-Castro, S.; Cabrera-Alvargonzalez, J.J.; Montano-Barrientos, J.; Godoy-Diz, M.; Regueiro, B. The Modification of the Illumina® CovidSeqTM Workflow for RSV Genomic Surveillance: The Genetic Variability of RSV during the 2022–2023 Season in Northwest Spain. Int. J. Mol. Sci. 2023, 24, 16055. [Google Scholar] [CrossRef]
- Vázquez-Pérez, J.A.; Wong-Arambula, C.; Solis-Hernandez, M.; Becerril-Vargas, E.; Barrera-Badillo, G.; Ahumada-Topete, V.H.; Avila-Rios, S.; Perez-Padilla, R.; Mejia-Nepomuceno, F.; Mendoza-Ramirez, E. First Laboratory-Confirmed Human Case of Infection with Influenza A (H5N2) Virus Reported in Mexico. medRxiv 2024. [Google Scholar] [CrossRef]
- Zhou, B.; Wentworth, D.E. Influenza A Virus Molecular Virology Techniques. Influenza Virus Methods Protoc. 2012, 865, 175–192. [Google Scholar] [CrossRef]
- Maloney, D.M.; Fernandes, G.; Jasim, S.; Williams, T.; Namugenyi, S.; Carr, M.; Meyer, J.R.; Sharma, A.; Marshal, L.; Nunley, B.E.; et al. ARTIC RSV Amplicon Sequencing Reveals Global RSV Genotype Dynamics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Pillay, S.; San, J.E.; Tshiabuila, D.; Naidoo, Y.; Pillay, Y.; Maharaj, A.; Anyaneji, U.J.; Wilkinson, E.; Tegally, H.; Lessells, R.J. Evaluation of Miniaturized Illumina DNA Preparation Protocols for SARS-CoV-2 Whole Genome Sequencing. PLoS ONE 2023, 18, e0283219. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Vanden Eynden, E.; Vandamme, A.-M. Genome Detective: An Automated System for Virus Identification from High-Throughput Sequencing Data. Bioinformatics 2019, 35, 871–873. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 29 May 2025).
- Aksamentov, I.; Roemer, C.; Hodcroft, E.; Neher, R. Nextclade: Clade Assignment, Mutation Calling and Quality Control for Viral Genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Gardy, J.L.; Loman, N.J. Towards a Genomics-Informed, Real-Time, Global Pathogen Surveillance System. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef]
- Price, V.; Ngwira, L.G.; Lewis, J.M.; Baker, K.S.; Peacock, S.J.; Jauneikaite, E.; Feasey, N. A Systematic Review of Economic Evaluations of Whole-Genome Sequencing for the Surveillance of Bacterial Pathogens. Microb. Genom. 2023, 9, 000947. [Google Scholar] [CrossRef]
- Tran, M.; Smurthwaite, K.S.; Nghiem, S.; Cribb, D.M.; Zahedi, A.; Ferdinand, A.D.; Andersson, P.; Kirk, M.D.; Glass, K.; Lancsar, E. Economic Evaluations of Whole-Genome Sequencing for Pathogen Identification in Public Health Surveillance and Health-Care-Associated Infections: A Systematic Review. Lancet Microbe 2023, 4, e953–e962. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; Lee, S.; Park, M.; Kim, T.Y.; Park, M.G.; Choi, B.Y.; Kim, D.; Chang, H.; Kim, V.N.; Lee, C.J. Development of a Laboratory-Safe and Low-Cost Detection Protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19). Exp. Neurobiol. 2020, 29, 107–119. [Google Scholar] [CrossRef]
- Rosenthal, S.H.; Gerasimova, A.; Ruiz-Vega, R.; Livingston, K.; Kagan, R.M.; Liu, Y.; Anderson, B.; Owen, R.; Bernstein, L.; Smolgovsky, A. Development and Validation of a High Throughput SARS-CoV-2 Whole Genome Sequencing Workflow in a Clinical Laboratory. Sci. Rep. 2022, 12, 2054. [Google Scholar] [CrossRef]
- Ravi, V.; Imran, M.; Khare, K.; Mishra, P.; Mohite, R.; Khan, M.A.; Swaminathan, A.; Yadav, A.; Sinha, S.; Shukla, R. Clinico-Genomic Study Reveals Association of Dengue Virus Genome High Frequency Mutations with Dengue Disease Severity. Sci. Rep. 2025, 15, 18724. [Google Scholar] [CrossRef]
- Carpenter, R.E.; Tamrakar, V.K.; Almas, S.; Brown, E.; Sharma, R. COVIDSeq as Laboratory Developed Test (LDT) for Diagnosis of SARS-CoV-2 Variants of Concern (VOC). Arch. Clin. Biomed. Res. 2022, 6, 954–970. [Google Scholar] [CrossRef]
- Bhoyar, R.C.; Jain, A.; Sehgal, P.; Divakar, M.K.; Sharma, D.; Imran, M.; Jolly, B.; Ranjan, G.; Rophina, M.; Sharma, S.; et al. High Throughput Detection and Genetic Epidemiology of SARS-CoV-2 Using COVIDSeq next-Generation Sequencing. PLoS ONE 2021, 16, e0247115. [Google Scholar] [CrossRef]
- Lowry, K.; Bauer, M.J.; Buckley, C.; Wang, C.; Bordin, A.; Badman, S.; Harris, P.N.; Mackay, I.; Whiley, D. Evaluation of Illumina® COVIDSeqTM as a Tool for Omicron SARS-CoV-2 Characterisation. J. Virol. Methods 2023, 322, 114827. [Google Scholar] [CrossRef]
- Illumina, Inc. Illumina Illumina COVIDSeq RUO Kits; Illumina, Inc.: San Diego, CA, USA, 2024. [Google Scholar]
- Clark, C.R.; Hardison, M.T.; Houdeshell, H.N.; Vest, A.C.; Whitlock, D.A.; Skola, D.D.; Koble, J.S.; Oberholzer, M.; Schroth, G.P. Evaluation of an Optimized Protocol and Illumina ARTIC V4 Primer Pool for Sequencing of SARS-CoV-2 Using COVIDSeqTM and DRAGENTM COVID Lineage App Workflow. bioRxiv 2022. [Google Scholar] [CrossRef]
- Vogels, C.B.; Hill, V.; Breban, M.I.; Chaguza, C.; Paul, L.M.; Sodeinde, A.; Taylor-Salmon, E.; Ott, I.M.; Petrone, M.E.; Dijk, D. DengueSeq: A Pan-Serotype Whole Genome Amplicon Sequencing Protocol for Dengue Virus. BMC Genom. 2024, 25, 433. [Google Scholar] [CrossRef] [PubMed]
- Bermann, T.; Baethgen, L.F.; Gregianini, T.S.; Godinho, F.; Barcellos, R.B.; Ruivo, A.P.; Bauerman, M.; Selayaran, T.M.; dos Santos, F.M.; Schoerer, J.A. Deep Sequencing of Dengue Virus Genome Reveals Simultaneous Circulation and Coinfection of Dengue Virus in Southern Brazil 2022–2023. J. Med. Virol. 2024, 96, e70013. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Katuwal, N.; Shrestha, A.; Madhup, S.K.; Tamrakar, D.; Shrestha, R. Whole Genome Sequencing and Phylogenetic Analysis of Dengue Virus in Central Nepal from 2022 to 2023. BMC Glob. Public Health 2025, 3, 18. [Google Scholar] [CrossRef]
- Padane, A.; Tegally, H.; Ramphal, Y.; Seyni, N.; Sarr, M.; Diop, M.M.; Diedhiou, C.K.; Mboup, A.; Diouf, N.D.; Souaré, A. An Emerging Clade of Chikungunya West African Genotype Discovered in Real-Time during 2023 Outbreak in Senegal. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, A.C.P.; Fonseca, P.L.C.; Alves, H.J.; Bonfim, D.M.; Dutra, J.V.R.; Moreira, F.R.R.; de Brito Mendonça, C.P.T.; Rios, J.S.H.; do Prado Silva, J.; Malta, F.S.V. Retrospective Epidemiologic and Genomic Surveillance of Arboviruses in 2023 in Brazil Reveals High Co-Circulation of Chikungunya and Dengue Viruses. BMC Med. 2024, 22, 546. [Google Scholar] [CrossRef] [PubMed]
- de La Roque, D.G.L.; Santos, E.V.; Policastro, L.R.; da Costa, P.N.M.; Evaristo, M.; Yamamoto, A.Y.; Giomo, D.B.; Torres, P.M.A.; Gentil, D.C.D.; Minto, E.C.M. Exploring the Chikungunya Virus Landscape in a Dengue-Endemic Brazilian Area. J. Infect. Public Health 2024, 17, 102442. [Google Scholar] [CrossRef]
- Hull, N.C.; Yeboah, E.; Tsaknaridis, L.; Makris, V. An NGS Amplicon Tiling Protocol for HIV-1 Drug Resistance Detection Using Illumina® COVIDSeq™ Assay Kit; NGS-Globalhealth APHL Association of Public Health Laboratories: Bethesda, MD, USA, 2024. [Google Scholar]
- Pan, J.; Brown, J.; Broadhurst, M.J.; Houlihan, C.; O’Toole, Á.; Rambaut, A.; Barrett, J.C.; Goodfellow, I.; Cotten, M. Monkeypox Virus Multiplexed PCR Amplicon Sequencing (PrimalSeq), protocols.io. 2022. Available online: https://www.protocols.io/view/monkeypox-virus-multiplexed-pcr-amplicon-sequencin-5qpvob1nbl4o/v4 (accessed on 28 May 2025).
- Sicilia, P.; Fantilli, A.C.; Cuba, F.; Di Cola, G.; Barbas, M.G.; Poklepovich, T.; Re, V.E.; Castro, G.; Pisano, M.B. Hepatitis A Virus Whole Genome Sequencing Strategy Using NGS/Illumina Technology. medRxiv 2024. [Google Scholar] [CrossRef]
- Sicilia, P.; Fantilli, A.C.; Cuba, F.; Di Cola, G.; Barbás, M.G.; Poklepovich, T.; Ré, V.E.; Castro, G.; Pisano, M.B. Novel Strategy for Whole-Genome Sequencing of Hepatitis A Virus Using NGS Illumina Technology and Phylogenetic Comparison with Partial VP1/2A Genomic Region. Sci. Rep. 2025, 15, 6375. [Google Scholar] [CrossRef]
- GISAID—Gisaid.Org. Available online: https://gisaid.org/ (accessed on 26 May 2025).
- Illumina|technote_Q-Scores.Pdf. Available online: https://www.illumina.com/ (accessed on 28 May 2025).
- Bendall, E.E.; Zhu, Y.; Fitzsimmons, W.J.; Rolfes, M.; Mellis, A.; Halasa, N.; Martin, E.T.; Grijalva, C.G.; Talbot, H.K.; Lauring, A.S. Influenza A Virus Within-Host Evolution and Positive Selection in a Densely Sampled Household Cohort over Three Seasons. Virus Evol. 2024, 10, veae084. [Google Scholar] [CrossRef]
- Van den Hoecke, S.; Verhelst, J.; Vuylsteke, M.; Saelens, X. Analysis of the Genetic Diversity of Influenza A Viruses Using Next-Generation DNA Sequencing. BMC Genom. 2015, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Nunley, B.E.; Weixler, A.; Kim, H.G.; Xie, H.; Sereewit, J.; Hajian, P.; Ellis, S.; Mills, M.G.; Pérez-Osorio, A.C.; Goya, S. Clinical Performance Evaluation of a Tiling Amplicon Panel for Whole Genome Sequencing of Respiratory Syncytial Virus. bioRxiv 2025. [Google Scholar] [CrossRef]
- Pandya, K.; Ray, C.A.; Brunner, L.; Wang, J.; Lee, J.W.; DeSilva, B. Strategies to Minimize Variability and Bias Associated with Manual Pipetting in Ligand Binding Assays to Assure Data Quality of Protein Therapeutic Quantification. J. Pharm. Biomed. Anal. 2010, 53, 623–630. [Google Scholar] [CrossRef]
- Almatrafi, A.A. Preanalytical Errors: A Major Issue in Medical Laboratory. Acta Sci. Med. Sci. 2019, 3, 93–95. [Google Scholar]
- Buermans, H.P.; den Dunnen, J.T. Next Generation Sequencing Technology: Advances and Applications. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1932–1941. [Google Scholar] [CrossRef]
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Quinn, T.C.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A. Better Tests, Better Care: Improved Diagnostics for Infectious Diseases. Clin. Infect. Dis. 2013, 57, S139–S170. [Google Scholar] [CrossRef]
- Vashisht, V.; Vashisht, A.; Mondal, A.K.; Farmaha, J.; Alptekin, A.; Singh, H.; Ahluwalia, P.; Srinivas, A.; Kolhe, R. Genomics for Emerging Pathogen Identification and Monitoring: Prospects and Obstacles. BioMedInformatics 2023, 3, 1145–1177. [Google Scholar] [CrossRef]
- Monne, I.; Ormelli, S.; Salviato, A.; De Battisti, C.; Bettini, F.; Salomoni, A.; Drago, A.; Zecchin, B.; Capua, I.; Cattoli, G. Development and Validation of a One-Step Real-Time PCR Assay for Simultaneous Detection of Subtype H5, H7, and H9 Avian Influenza Viruses. J. Clin. Microbiol. 2008, 46, 1769–1773. [Google Scholar] [CrossRef]
- Schuster, J.E.; Williams, J.V. Emerging Respiratory Viruses in Children. Infect. Dis. Clin. 2018, 32, 65–74. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Recommendations on the Use of Rapid Testing for Influenza Diagnosis; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Huang, H.-S.; Tsai, C.-L.; Chang, J.; Hsu, T.-C.; Lin, S.; Lee, C.-C. Multiplex PCR System for the Rapid Diagnosis of Respiratory Virus Infection: Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2018, 24, 1055–1063. [Google Scholar] [CrossRef]
- Rabold, E.; Waggoner, J. Rapid Diagnostic Tests for Infectious Diseases. In CDC Yellow Book, Centers for Disease Control and Prevention Traveler’s Health; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Lucey, M.; Macori, G.; Mullane, N.; Sutton-Fitzpatrick, U.; Gonzalez, G.; Coughlan, S.; Purcell, A.; Fenelon, L.; Fanning, S.; Schaffer, K. Whole-Genome Sequencing to Track Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission in Nosocomial Outbreaks. Clin. Infect. Dis. 2021, 72, e727–e735. [Google Scholar] [CrossRef]
- Esser, E.; Schulte, E.C.; Graf, A.; Karollus, A.; Smith, N.H.; Michler, T.; Dvoretskii, S.; Angelov, A.; Sonnabend, M.; Peter, S. Viral Genome Sequencing to Decipher In-Hospital SARS-CoV-2 Transmission Events. Sci. Rep. 2024, 14, 5768. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.L.; Copin, R.; McCarthy, S.; Coppi, A.; Warner, F.; Ferguson, D.; Duckwall, C.; Borg, R.; Muenker, M.C.; Overton, J. Use of Whole-Genome Sequencing to Estimate the Contribution of Immune Evasion and Waning Immunity on Decreasing COVID-19 Vaccine Effectiveness. J. Infect. Dis. 2023, 227, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.; Sjaarda, C.; Rand, B.; Roberts, D.; Tozer, K.; Fattouh, R.; Kozak, R.; Sheth, P. The Molecular Epidemiology of Respiratory Syncytial Virus in Ontario, Canada from 2022–2024 Using a Custom Whole Genome Sequencing Assay and Analytics Package. J. Clin. Virol. 2025, 176, 105759. [Google Scholar] [CrossRef]
- Bulilete, O.; Lorente, P.; Leiva, A.; Carandell, E.; Oliver, A.; Rojo, E.; Pericas, P.; Llobera, J.; COVID-19 Primary Care Research Group. PanbioTM Rapid Antigen Test for SARS-CoV-2 Has Acceptable Accuracy in Symptomatic Patients in Primary Health Care. J. Infect. 2021, 82, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Krüger, L.J.; Gaeddert, M.; Tobian, F.; Lainati, F.; Gottschalk, C.; Klein, J.A.; Schnitzler, P.; Kräusslich, H.-G.; Nikolai, O.; Lindner, A.K. The Abbott PanBio WHO Emergency Use Listed, Rapid, Antigen-Detecting Point-of-Care Diagnostic Test for SARS-CoV-2—Evaluation of the Accuracy and Ease-of-Use. PLoS ONE 2021, 16, e0247918. [Google Scholar] [CrossRef] [PubMed]
- Okoye, G.A.; Kamara, H.I.; Strobeck, M.; Mellman, T.A.; Kwagyan, J.; Sullivan, A.; Byrd, A.S.; Shokrani, B.; Mighty, H.E. Diagnostic Accuracy of a Rapid Diagnostic Test for the Early Detection of COVID-19. J. Clin. Virol. 2022, 147, 105023. [Google Scholar] [CrossRef]
- Thatcher, S.A. DNA/RNA Preparation for Molecular Detection. Clin. Chem. 2015, 61, 89–99. [Google Scholar] [CrossRef]
- Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and Application in Diagnostic Virology. Clin. Microbiol. Rev. 2000, 13, 559–570. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.L.; Kelly, R.P.; Lowell, N.C.; Port, J.A. Indexed PCR Primers Induce Template-Specific Bias in Large-Scale DNA Sequencing Studies. PLoS ONE 2016, 11, e0148698. [Google Scholar] [CrossRef]
Target Virus | Multiple Workflow | Rapid Combined Workflow |
---|---|---|
Influenza A | Alphainfluenzavirus (H1N1) | Alphainfluenzavirus (H1N1) |
Influenza B | Betainfluenzavirus | Betainfluenzavirus |
RSV A | Bovine orthopneumovirus | Bovine orthopneumovirus |
Rhinovirus A1 | Rhinovirus A (HRV-A1 | Rhinovirus A (HRV-A1 |
Rhinovirus A16 | Rhinovirus A (HRV-A1) | Rhinovirus A (HRV-A1) |
SARS-CoV-2 | Severe acute respiratory syndrome-related corona virus (SARS-CoV-2, Omicron (BA.2 21L) | Severe acute respiratory syndrome-related corona virus (SARS-CoV-2, Omicron (BA.2 21L) |
SARS-CoV-2 | Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2, International A_B Diversity) | Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2, International A_B Diversity) |
Wilcoxon Value | p Value | |
---|---|---|
Substitutions | W = 27.5 | p = 1 |
Deletions | W = 28 | p = 1 |
Insertions | W = 28.5 | p = 1 |
Nucleotide Missing N | W = 24 | p = 0.6477 |
Amino Acids Unknown X | W = 25 | p = 0.7441 |
Quantification Kit | Costs of Kits in USD ($) | Multiple Workflows (4 Samples) ($) | Rapid Workflow (1 Sample) ($) |
---|---|---|---|
TAKARA—Library Quantification Kit | 972.54 | 7.78 | 1.94 |
QUBIT 1X DSDNA HS 1 KIT | 102.59 | 4.10 | 1.03 |
E-GEL EX GELS, 1% | 119.05 | 47.62 | 11.91 |
Total | 59.50 | 14.88 |
Steps | Time for the Multiple Workflow | Time for the Combined Workflow |
---|---|---|
Amplification | 4 h 30 min | 4 h 30 min |
Purification | 40 min | 15 min |
Library Preparation | 3 h 20 min | 1 h |
Purification | 1 h | 15 min |
E-Gel Visualisation | 1 h | 15 min |
Qubit Quantification | 32 min | 8 min |
qPCR Quantification | 7 h | 1 h 45 min |
~18 h and 2 min | ~8 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mthembu, N.; Pillay, S.; Musopole, H.T.; Naidoo, S.J.; Msomi, N.; Baye, B.C.; Tshiabuila, D.; Memela, N.Z.; Tombo, T.; de Oliveira, T.; et al. Adapting the Illumina COVIDSeq for Whole Genome Sequencing of Other Respiratory Viruses in Multiple Workflows and a Single Rapid Workflow. LabMed 2025, 2, 19. https://doi.org/10.3390/labmed2040019
Mthembu N, Pillay S, Musopole HT, Naidoo SJ, Msomi N, Baye BC, Tshiabuila D, Memela NZ, Tombo T, de Oliveira T, et al. Adapting the Illumina COVIDSeq for Whole Genome Sequencing of Other Respiratory Viruses in Multiple Workflows and a Single Rapid Workflow. LabMed. 2025; 2(4):19. https://doi.org/10.3390/labmed2040019
Chicago/Turabian StyleMthembu, Nqobile, Sureshnee Pillay, Hastings Twalie Musopole, Shirelle Janine Naidoo, Nokukhanya Msomi, Bertha Cinthia Baye, Derek Tshiabuila, Nokulunga Zamagambu Memela, Thembelihle Tombo, Tulio de Oliveira, and et al. 2025. "Adapting the Illumina COVIDSeq for Whole Genome Sequencing of Other Respiratory Viruses in Multiple Workflows and a Single Rapid Workflow" LabMed 2, no. 4: 19. https://doi.org/10.3390/labmed2040019
APA StyleMthembu, N., Pillay, S., Musopole, H. T., Naidoo, S. J., Msomi, N., Baye, B. C., Tshiabuila, D., Memela, N. Z., Tombo, T., de Oliveira, T., & Giandhari, J. (2025). Adapting the Illumina COVIDSeq for Whole Genome Sequencing of Other Respiratory Viruses in Multiple Workflows and a Single Rapid Workflow. LabMed, 2(4), 19. https://doi.org/10.3390/labmed2040019