Potentials and Challenges of Chatbot-Supported Thesis Writing: An Autoethnography
Abstract
:1. Introduction
2. Literature Review
2.1. AIEd Classification
2.2. Acceptance
2.3. Influencing Factors
2.4. Potentials of LLMs in HE
2.4.1. System-Oriented Potentials
2.4.2. Teaching-Oriented Potentials
2.4.3. Learning-Oriented Potentials
2.5. Integration into Everyday HE Life
2.5.1. Perception
2.5.2. Accumulation
2.5.3. Integration
2.6. Challenges
2.7. Curricular Implications
2.8. Chatbots
3. Materials and Methods
3.1. Bachelor Thesis
- Literature Review. The theoretical foundation was built on literature research, which allowed the outline of the importance of LLM in teaching (see Section 2).
- Practice Study. A practical study, i.e., the application of ChatGPT (3.5, GPT-3) to a final exam, was used to assess the performance of ChatGPT.
- Evaluation Model. The third step was to develop a simplified evaluation model for the suitability of an LLM to support the learning performance of a teaching–learning activity. The goal of such an evaluation model was to identify teaching–learning activities that particularly benefit from the availability of LLMs.
- Autoethnography. Autoethnography was to be used to document all decisions to use ChatGPT, as well as all ChatGPT chat history created during the development of the bachelor thesis. In general, autoethnography is defined as a research method that aims at describing and analyzing personal experiences to understand mostly cultural phenomena, often in a broader sense [50]. Applications include, amongst others, the experience of studying abroad during an epidemic [51] or learning practices in multiplayer online games [52]. Accordingly, autoethnography is regarded in this study as a valid method for capturing the potential uses of ChatGPT. By documenting decisions on the use of ChatGPT, the results and experiences during its use, and the evaluations of the results, estimations of the implications of using ChatGPT are enabled.
3.2. Results
3.2.1. Practice Study
3.2.2. Assessment Model
3.3. Autoethnography
- textually on 1% of texts generated from ChatGPT 1% (measure: ratio of word-for-word adoption of ChatGPT (compared to complete text),
- structurally on 15% items suggested by ChatGPT 15% (measure: structuring elements, such as headings and lists),
- ideationally on 10% of ideas suggested by ChatGPT 10%. (measure: ideas, which are explicated in the thesis)
4. Autoethnographic Experiences
4.1. Respect the Law and Examination Regulations
4.2. Reflect on Your Learning Goals
- Awareness of learning objectives: I had to be aware of my learning goals for supporting ChatGPT with the necessary information. These include the context (writing a bachelor thesis), the prompts used (e.g., generating a chapter outline), and the expected outcome of the interaction (e.g., an outline).
- Development of prompts: Based on learning goals and the expected outcomes, such as an outline or the generation of ideas via brainstorming, prompts had to be developed first. These were to guide ChatGPT to specifically generate the expected outcomes
- Content validation: Afterward, the outcomes had to be checked to see if they provided the expected information. In addition, a technical review (validation) had to be performed. On one hand, the validation was based on my knowledge (self-expertise) and an assessment of the applicability of the outcome based on external, easily accessible resources, such as Wikipedia. On the other hand, validation often also requires in-depth research, such as searching for other sources, e.g., articles or books).
- Reflection on the learning goals: Reflecting on the outcomes again raised my awareness of the learning goals. This revealed whether valid outcomes were generated by ChatGPT. These reflected newly learned knowledge, whereas unsuitable content was discarded. If necessary, consideration was given to adjusting the context, the prompts used, or even the interaction goal. Content validation provided learning in both positive and negative cases.
4.3. Use ChatGPT as a Writing Partner
4.4. Use ChatGPT as a Learning Partner
4.5. Iterate and Converse with ChatGPT
4.6. Summarize Learning Material with ChatGPT
4.7. Boost Coding with ChatGPT
4.8. Beware of Risks When Using ChatGPT
4.9. Read This Checklist before Using ChatGPT
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schmoll, T.; Löffel, J.; Falkemeier, G. Künstliche Intelligenz in der Hochschullehre. In Lehrexperimente der Hochschulbildung. Didaktische Innovationen aus den Fachdisziplinen; no. 2, vollständig überarbeitete und erweiterte Auflage; wbv: Bielefeld, Germany, 2019; pp. 117–122. [Google Scholar] [CrossRef]
- Alexander, B.; Ashford-Rowe, K.; Barajas-Murph, N.; Dobbin, G.; Knott, J.; McCormack, M.; Pomerantz, J.; Seilhamer, R.; Weber, N. EDUCAUSE Horizon Report: 2019 Higher Education Edition; Horizon Report; Educause: Louisville, CO, USA, 2019; Available online: https://library.educause.edu/-/media/files/library/2019/4/2019horizonreport.pdf (accessed on 23 February 2023).
- Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic review of research on artificial intelligence applications in higher education—Where are the educators? Int. J. Educ. Technol. High. Educ. 2019, 16, 39. [Google Scholar] [CrossRef]
- de Witt, C.; Rampelt, F. Künstliche Intelligenz in der Hochschulbildung Whitepaper; KI-Campus: Berlin, Germany, 2020; pp. 1–59. [Google Scholar] [CrossRef]
- Gao, C.A.; Howard, F.M.; Markov, N.S.; Dyer, E.C.; Ramesh, S.; Luo, Y.; Pearson, A.T. Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers. Sci. Commun. Educ. 2022; preprint. [Google Scholar] [CrossRef]
- King, M.R.; Chatgpt. A Conversation on Artificial Intelligence, Chatbots, and Plagiarism in Higher Education. Cell. Mol. Bioeng. 2023, 16, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Susnjak, T. ChatGPT: The End of Online Exam Integrity? arXiv 2022, arXiv:2212.09292. Available online: http://arxiv.org/abs/2212.09292 (accessed on 4 February 2023).
- Zhai, X. ChatGPT User Experience: Implications for Education. SSRN J. 2022, 1–18. [Google Scholar] [CrossRef]
- Gimpel, H.; Hall, K.; Decker, S.; Eymann, T.; Lämmermann, L.; Maedche, A.; Röglinger, M.; Ruiner, C.; Schoch, M.; Schoop, M.; et al. Unlocking the Power of Generative AI Models and Systems such as GPT-4 and ChatGPT for Higher Education A Guide for Students and Lecturers; University of Hohenheim: Stuttgart, Germany, 2023. [Google Scholar] [CrossRef]
- Baker, T.; Smith, L.; Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta Found. 2019, pp. 1–56. Available online: https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf (accessed on 26 January 2023).
- Luckin, R.; Holmes, W.; Forcier, L.; Griffiths, M. Intelligence Unleashed. An argument for AI in Education; Pearson: London, UK, 2016; pp. 1–61. [Google Scholar]
- Wannemacher, K.; Bodmann, L. Künstliche Intelligenz an den Hochschulen—Potenziale und Herausforderungen in Forschung, Studium und Lehre sowie Curriculumentwicklung. In Hochschulforum Digitalisierung; Arbeitspapier Nr. 59; Hochschulforum Digitalisierung: Berlin, Germany, 2021; pp. 1–66. [Google Scholar]
- Handke, J. Digitale Hochschullehre—Vom einfachen Integrationsmodell zur Künstlichen Intelligenz. In Hochschule der Zukunft: Beiträge zur zukunftsorientierten Gestaltung von Hochschulen; Dittler, U., Kreidl, C., Eds.; Springer VS: Wiesbaden, Germany, 2018; pp. 249–263. [Google Scholar] [CrossRef]
- Hochschulforum Digitalisierung. The Digital Turn—Auf dem Weg zur Hochschulbildung im Digitalen Zeitalter; Abschlussbericht Arbeitspapier Nr. 28; Hochschulforum Digitalisierung: Berlin, Germany, 2016; Available online: https://hochschulforumdigitalisierung.de/sites/default/files/dateien/HFD_Abschlussbericht_Kurzfassung.pdf (accessed on 24 January 2023).
- Hobert, S.; Berens, F. Einsatz von Chatbot-basierten Lernsystemen in der Hochschullehre-Einblicke in die Implementierung zweier Pedagogical Conversational Agents. In DELFI 2019; Konert, J., Pinkwart, N., Eds.; Gesellschaft für Informatik e.V.: Bonn, Germany, 2019; pp. 297–298. [Google Scholar] [CrossRef]
- Stützer, C.M. Künstliche Intelligenz in der Hochschullehre: Empirische Untersuchungen zur KI-Akzeptanz von Studierenden an (sächsischen) Hochschulen; Technische Universität Dresden: Dresden, Germany, 2022. [Google Scholar] [CrossRef]
- Qadir, J. Engineering Education in the Era of ChatGPT: Promise and Pitfalls of Generative AI for Education. TechRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Lensing, K. Künstliche Intelligenz im Lehr-Lernlabor. In Künstliche Intelligenz im Lehr-Lernlabor; wbv Media: Bielefeld, Germany, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Shirouzu, H. How AI Technology is Helping to Transform Education in Japan. IBM Customer Stories: As Told by Our Customers. Available online: https://www.ibm.com/blogs/client-voices/how-ai-is-helping-transform-education-in-japan/ (accessed on 22 January 2023).
- Fürst, R.A. Zukunftsagenda und 10 Thesen zur Digitalen Bildung in Deutschland in Digitale Bildung und Künstliche Intelligenz in Deutschland; AKAD University Edition; Fürst, R.A., Ed.; Springer: Wiesbaden, Germany, 2020; pp. 301–347. [Google Scholar] [CrossRef]
- Kieslich, K.; Lünich, M.; Marcinkowski, F.; Starke, C. Hochschule der Zukunft—Einstellungen von Studierenden Gegenüber Künstlicher Intelligenz an der Hochschule; Institute for Internet and Democracy (Précis), Heinrich-Heine-Universität Düsseldorf: Düsseldorf, Germany, 2019; Available online: https://www.researchgate.net/publication/336588629_Hochschule_der_Zukunft_-_Einstellungen_von_Studierenden_gegenuber_Kunstlicher_Intelligenz_an_der_Hochschule (accessed on 27 February 2023).
- Alshater, M. Exploring the Role of Artificial Intelligence in Enhancing Academic Performance: A Case Study of ChatGPT. SSRN J. 2022, 1–22. [Google Scholar] [CrossRef]
- Aljanabi, M.; Ghazi, M.; Ali, A.H.; Abed, S.A.; Gpt, C. ChatGpt: Open Possibilities. Iraqi J. Comput. Sci. Math. 2023, 4, 62–64. [Google Scholar]
- Rudolph, J.; Tan, S.; Tan, S. ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? J. Appl. Learn. Teach. 2023, 6, 342–363. [Google Scholar] [CrossRef]
- Aydın, Ö.; Karaarslan, E. OpenAI ChatGPT Generated Literature Review: Digital Twin in Healthcare. SSRN J. 2022, 2, 22–31. [Google Scholar] [CrossRef]
- Azaria, A. ChatGPT Usage and Limitations. Open Science Framework. 2022. preprint. Available online: https://hal.science/hal-03913837v1/document (accessed on 4 February 2023).
- Frieder, S.; Pinchetti, L.; Chevalier, A.; Gri, R.-R.; Salvatori, T.; Lukasiewicz, T.; Petersen, P.C.; Berner, J. Mathematical Capabilities of ChatGPT. arXiv 2023, arXiv:2301.13867. Available online: http://arxiv.org/abs/2301.13867 (accessed on 28 February 2023).
- Guo, B.; Zhang, X.; Wang, Z.; Jiang, M.; Nie, J.; Ding, Y.; Yue, J.; Wu, Y. How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection. arXiv. 2023. Available online: http://arxiv.org/abs/2301.07597 (accessed on 18 January 2023).
- OpenAI. GPT-4 Technical Report. arXiv 2023. [Google Scholar] [CrossRef]
- Ventayen, R.J.M. OpenAI ChatGPT Generated Results: Similarity Index of Artificial Intelligence-Based Contents. Adv. Intell. Syst. Comput. 2023, 1–6. [Google Scholar] [CrossRef]
- Yeadon, W.; Inyang, O.-O.; Mizouri, A.; Peach, A.; Testrow, C. The Death of the Short-Form Physics Essay in the Coming AI Revolution. arXiv 2022, arXiv:2212.11661. Available online: http://arxiv.org/abs/2212.11661 (accessed on 6 February 2023).
- Keller, B.; Baleis, J.; Starke, C.; Marcinkowski, F. Machine Learning and Artificial Intelligence in Higher Education: A State-of-the-Art Report on the German University Landscape. Heinrich-Heine-Univ. Düsseldorf. 2019, pp. 1–31. Available online: https://www.sozwiss.hhu.de/fileadmin/redaktion/Fakultaeten/Philosophische_Fakultaet/Sozialwissenschaften/Kommunikations-_und_Medienwissenschaft_I/Dateien/Keller_et_al.__2019__-_AI_in_Higher_Education.pdf (accessed on 30 January 2023).
- Pedro, F.; Subosa, M.; Rivas, A.; Valverde, P. Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development; UNESCO: Paris, France, 2019; pp. 1–48. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000366994 (accessed on 23 January 2023).
- Seufert, S.; Guggemos, J.; Sonderegger, S. Digitale Transformation der Hochschullehre: Augmentationsstrategien für den Einsatz von Data Analytics und Künstlicher Intelligenz. Z. Für Hochschulentwicklung 2020, 15, 81–101. [Google Scholar] [CrossRef]
- Kreutzer, R.T.; Sirrenberg, M. Anwendungsfelder der Künstlichen Intelligenz—Best Practices. In Künstliche Intelligenz Verstehen; no. Arbeitspapier Nr. 15; Springer Gabler: Wiesbaden, Germany, 2019; pp. 107–270. [Google Scholar] [CrossRef]
- Wannemacher, K.; Tercanli, H.; Jungermann, I.; Scholz, J.; von Villiez, A. Digitale Lernszenarien im Hochschulbereich; Hochschulforum Digitalisierung: Berlin, Germany, 2016; pp. 1–115. [Google Scholar]
- Blumentritt, M.; Schwinger, D.; Markgraf, D. Lernpartnerschaften—Eine vergleichende Erhebung des Rollenverständnisses von Lernenden und Lehrenden im digitalen Studienprozess. In Digitale Bildung und Künstliche Intelligenz in Deutschland; AKAD University Edition; Fürst, R.A., Ed.; Springer: Wiesbaden, Germany, 2020; pp. 475–499. [Google Scholar] [CrossRef]
- Rensing, C. Informatik und Bildungstechnologie. In Handbuch Bildungstechnologie; Niegemann, H., Weinberger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 585–603. [Google Scholar] [CrossRef]
- Dunkelau, J.; Leuschel, M. Fairness-Aware Machine Learning; Universität Düsseldorf: Düsseldorf, Germany, 2020; pp. 1–60. [Google Scholar]
- Massmann, C.; Hofstetter, A. AI-pocalypse now? Herausforderungen Künstlicher Intelligenz für Bildungssystem, Unternehmen und die Workforce der Zukunft. In Digitale Bildung und Künstliche Intelligenz in Deutschland: Nachhaltige Wettbewerbsfähigkeit und Zukunftsagenda; AKAD University Edition; Fürst, R.A., Ed.; Springer: Wiesbaden, Germany, 2020; pp. 167–220. [Google Scholar] [CrossRef]
- Buxmann, P.; Schmidt, H. Grundlagen der Künstlichen Intelligenz und des Maschinellen Lernens. In Künstliche Intelligenz: Mit Algorithmen Zum Wirtschaftlichen Erfolg; Buxmann, P., Schmidt, H., Eds.; Springer Gabler: Berlin/Heidelberg, Germany, 2021; pp. 3–25. [Google Scholar] [CrossRef]
- Büching, C.; Mah, D.-K.; Otto, S.; Paulicke, P.; Hartman, E.A. Learning Analytics an Hochschulen. In Künstliche Intelligenz; Wittpahl, V., Ed.; Springer Vieweg: Berlin/Heidelberg, Germany, 2019; pp. 142–160. [Google Scholar] [CrossRef]
- Spannagel, C. Rules for Tolls. 2023. Available online: https://csp.uber.space/phhd/rulesfortools.pdf (accessed on 7 February 2023).
- Wu, R.; Yu, Z. Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. Br. J. Educ. Technol. 2023; in press. [Google Scholar] [CrossRef]
- Guo, K.; Zhong, Y.; Li, D.; Chu, S.K.W. Effects of chatbot-assisted in-class debates on students’ argumentation skills and task motivation. Comput. Educ. 2023, 203, 104862. [Google Scholar] [CrossRef]
- Hwang, G.-J.; Chang, C.-Y. A review of opportunities and challenges of chatbots in education. Interact. Learn. Environ. 2023, 31, 4099–4112. [Google Scholar] [CrossRef]
- Yan, L.; Sha, L.; Zhao, L.; Li, Y.; Martinez-Maldonado, R.; Chen, G.; Li, X.; Jin, Y.; Gašević, D. Practical and ethical challenges of large language models in education: A systematic scoping review. Br. J. Educ. Technol. 2023; early review. [Google Scholar] [CrossRef]
- Chocarro, R.; Cortiñas, M.; Marcos-Matás, G. Teachers’ attitudes towards chatbots in education: A technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics. Educ. Stud. 2023, 49, 295–313. [Google Scholar] [CrossRef]
- Charbonneau-Gowdy, P.; Cubric, M.; Pechenkina, K.; Dyer, R.; Pyper, A.; Söbke, H.; Spangenberger, P. EJEL Editorial 2023: Trends and Research Gaps in e-Learning. Electron. J. e-Learn. 2023, 21, 248–257. [Google Scholar] [CrossRef]
- Ellis, C.; Adams, T.E.; Bochner, A.P. Autoethnography: An Overview. Hist. Soc. Res. Hist. Sozialforschung 2011, 36, 273–290. [Google Scholar]
- Lin, Y.; Nguyen, H. International Students’ Perspectives on e-Learning During COVID-19 in Higher Education in Australia: A Study of an Asian Student. Electron. J. e-Learn. 2021, 19, 241–251. [Google Scholar] [CrossRef]
- Knauf, K.; Deidersen, L.; Söbke, H.; Springer, C. An Autoethnographic Perspective on Teaching Soft Skills Using Multiplayer Online Games. In Games and Learning Alliance; Kiili, K., Antti, K., de Rosa, F., Dindar, M., Kickmeier-Rust, M., Bellotti, F., Eds.; in Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; pp. 86–95. [Google Scholar] [CrossRef]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Eisenführ, F.; Weber, M.; Langer, T. Rational Decision Making, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; Available online: https://link.springer.com/book/9783642028502 (accessed on 16 September 2023).
- Söbke, H.; Lück, A. Framing Algorithm-Driven Development of Sets of Objectives Using Elementary Interactions. Appl. Syst. Innov. 2022, 5, 49. [Google Scholar] [CrossRef]
- Hattie, J. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement, 1st ed.; Routledge: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Dolfsma, W. The mountain of experience: How people learn in a complex, evolving environment. Int. J. Soc. Econ. 2002, 29, 675–684. [Google Scholar] [CrossRef]
- Van Laer, S.; Elen, J. In search of attributes that support self-regulation in blended learning environments. Educ. Inf. Technol. 2017, 22, 1395–1454. [Google Scholar] [CrossRef]
- Slavin, R.E. Research on Cooperative Learning and Achievement: What We Know, What We Need to Know. Contemp. Educ. Psychol. 1996, 21, 43–69. [Google Scholar] [CrossRef]
- Trigwell, K.; Prosser, M. Development and Use of the Approaches to Teaching Inventory. Educ. Psychol. Rev. 2004, 16, 409–424. [Google Scholar] [CrossRef]
- Belbase, S.; Luitel, B.C.; Taylor, P.C. Autoethnography: A Method of Research and Teaching for Transformative Education. J. Educ. Res. 2008, 1, 86–95. [Google Scholar] [CrossRef]
- Ellis, C.; Adams, T.E.; Bochner, A.P. Autoethnografie. In Handbuch Qualitative Forschung in der Psychologie; Mey, G., Mruck, K., Eds.; VS Verlag für Sozialwissenschaften: Berlin, Germany, 2010; pp. 345–357. [Google Scholar] [CrossRef]
- Raab, D. Transpersonal Approaches to Autoethnographic Research and Writing. TQR 2015, 18, 1–18. [Google Scholar] [CrossRef]
- Profis, D. (621) 7 TIPPS FÜR BESSERE CHATGPT PROMPTS—So Bekommst du die Besten Antworten vom Chatbot—YouTube. Youtube. Available online: https://www.youtube.com/ (accessed on 25 August 2023).
- Alotaibi, W.H.; Alghamdi, A.K.H. Teaching 21st Century Skills in Saudi Arabia with Attention to Elementary Science Reading Habits. Educ. Sci. 2022, 12, 392. [Google Scholar] [CrossRef]
- Binkley, M.; Erstad, O.; Herman, J.; Raizen, S.; Ripley, M.; Miller-Ricci, M.; Rumble, M. Defining Twenty-First Century Skills. In Assessment and Teaching of 21st Century Skills; Griffin, P., McGaw, B., Care, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 17–66. [Google Scholar] [CrossRef]
Teaching Format | Interactivity | Feedback | Suitability of ChatGPT |
---|---|---|---|
Thesis | low | low | high |
Lecture | low | medium | high |
Mandatory Homework | medium | low | high |
Tutorial | medium | medium | medium |
Excursion | medium | medium | medium |
Practice | high | high | low |
Groupwork | high | high | low |
Consultation | high | high | low |
Find 10 references that address the use of AI in higher education. Preferably use literature reviews, technical reports, and meta-studies. (Chat1_Prompt1_Topic2) | |
|
How could a chapter of my bachelor thesis be structured, which deals with the definition and functionality of ChatGPT? Generate 5 bullet points without further explanations. (Chat2_Prompt1_Topic1) | |
Of course, here are five key points for structuring the chapter of your bachelor thesis on “Definition and functionality of ChatGPT”: 1. introduction to ChatGPT 2. basics of the GPT architecture 3. components of ChatGPT 4. functionalities in practice 5. challenges and further development |
Check the following text for the relevance of its argument structure. Are all relevant aspects taken into account? Generate 5 key points without further explanation. [Text] (Chat3_Prompt1_Topic4) | |
The text takes into account all the essential and relevant aspects in their argumentative structure: 1. emphasis on strengths and limitations in clear alternation. 2. mentioning versatility and natural language processing as strengths. 3. highlighting limited world knowledge and lack of judgment as limitations. 4. inclusion of scalability and fast response times as positive features. 5. consideration of lack of empathy and susceptibility to misinformation as weaknesses. |
Does the conclusion section of my bachelor thesis use an objective writing style? Replaced colloquial expressions with technical terms: [[...] As a result, limitations that currently inhibit the qualitative use of AI tools as aids in higher education can be replaced by application-specific functions in the foreseeable future]. (Chat4_Prompt3_Topic3) | |
The paragraph from the conclusion of your bachelor’s thesis already uses a relatively objective writing style. Here is a version with some colloquial expressions replaced by technical terms: [[...] As a result, currently existing limitations that currently hinder a qualitative integration of AI tools into university teaching could be substituted by application-specific functionalities in the medium term]. |
Show a possible integration process of AI in higher education teaching based on 3 to 5 aspects. Answer only in bullet points without further explanation. (Chat5_Prompt1_Topic6) | |
Of course, here are 5 aspects that show a possible integration process of AI in higher education teaching: 1. needs analysis and goal setting 2. selection of appropriate technologies and tools 3. pilot phase and training 4. successive integration and further development 5. monitoring, evaluation and adaptation |
Rate the following summary of my bachelor’s thesis in terms of relevance and comprehensibility to an audience outside my field in 5 bullet points. (Chat6_Prompt1_Topic2) | |
Here is how to evaluate your bachelor thesis abstract for relevance and comprehensibility: Relevance: The summary addresses important aspects of AI research in education and clarifies its future implications. ⭐ ⭐ ⭐ ⭐ ⭐ Comprehensibility: the language is clear and understandable, despite the technical terminology. Readers should be able to grasp the main points. ⭐ ⭐ ⭐ ⭐ Topic Complexity: The summary adequately addresses AI developments and educational use without going into too much detail. ⭐ ⭐ ⭐ ⭐ Clarity of conclusion: the conclusion emphasizes the need for HE responses to AI use, but the link to “disruptive impact” could be clearer. ⭐ ⭐ ⭐ Overall Impression: the summary is relevant, understandable, and addresses important future trends, but could be a bit more specific in the conclusion. ⭐ ⭐ ⭐ ⭐ Overall rating: ⭐ ⭐ ⭐ ⭐ (4 out of 5 stars) |
What writing styles are available to you when generating scientific texts? Write them down in a list. (Chat7_Prompt1_Topic3) | |
Of course, here is a list of writing styles I can use when generating scientific texts: 1. expository 2. analytical 3. argumentative 4. descriptive 5. comparative 6. critical 7. explorative 8. theoretical 9. empirical 10. interdisciplinary 11. literature review 12. synthesizing Please note that I am able to adapt writing styles depending on the requirements and context of your academic paper. |
Name possible uses of AI in higher education teaching. (Chat8_Prompt1_Topic1) | |
Artificial intelligence (AI) can be used in a variety of ways in higher education to enhance teaching and learning experiences. Here are some potential uses: 1. personalized learning support: AI can provide learners with individualized resources, exercises, and feedback based on their learning styles, abilities, and progress. 2. Automated grading: AI systems can automatically grade exams, assignments, and homework, recognizing specific criteria or patterns. This saves instructors time and enables faster feedback. 3. Adaptive learning platforms: Platforms that use AI can analyze learning progress and recommend to learners specifically what content they should work on next to promote optimal learning. 4. [...] | |
Create a list of curricular challenges of the integration process of AI in higher education. (Chat8_Prompt16_Topic2) | |
Integrating artificial intelligence (AI) into higher education brings several challenges that need to be addressed in the curriculum. Here is a list of curricular challenges: 1. personalized learning support: developing algorithms to tailor learning content to individual needs requires an understanding of learning psychology and data analytics. 2. automated assessment: curriculum design to incorporate assessment methods suitable for AI support, e.g., multiple-choice questions, coding exercises, or simulation-based exams. 3. adaptive learning platforms: Integrate data analytics and machine learning into the curriculum to understand adaptive algorithms and teach their application on learning platforms. 4. [...] |
Prompt No. | Category | Topic | Remark (Problem/Success/Canceling) |
---|---|---|---|
1 | Brainstorming | Possible applications of AI in HE | Output too large |
2 | Brainstorming | Possible applications of AI in HE | Output too general |
3 | Brainstorming | Possible applications of AI in HE | Output too short |
4 | Brainstorming | Possible applications of AI in HE | Output too inaccurate |
5 | Brainstorming | Possible applications of AI in HE | Success |
6 | Overview | Challenges of AI in HE | Output too general |
7 | Overview | Challenges of AI in HE | Output too large |
8 | Overview | Challenges of AI in HE | Output too inaccurate |
9 | Overview | Challenges of AI in HE | Success |
10 | Overview | Perception of AI in HE | Output too large |
11 | Overview | Perception of AI in HE | Output too short |
12 | Overview | Perception of AI in HE | Cancel |
13 | Structuring | Integration process of AI in curricular | Output too inaccurate |
14 | Structuring | Integration process of AI in curricular | Output too large |
15 | Structuring | Integration process of AI in curricular | Success |
16 | Brainstorming | Curricular challenges of AI integration in HE | Output too short |
17 | Brainstorming | Curricular challenges of AI integration in HE | Output too general |
18 | Brainstorming | Curricular challenges of AI integration in HE | Output too inaccurate |
19 | Brainstorming | Curricular challenges of AI integration in HE | Output too large |
20 | Brainstorming | Curricular challenges of AI integration in HE | Success |
Summarize the following abstract of a Systematic Review on the uses of AI in higher education. Limit yourself to 5 key points: [Abstract] (Chat9_Prompt4_Topic2) | |
|
Summarize the following conclusion about the prevailing views of AI in higher education. Limit yourself to the output of 5 bullet points. (Chat10_Prompt3_Topic5) | |
|
Create a curriculum that introduces me to the theoretical and practical basis of programming in Python. Include in it questions and programming tests to check my level of knowledge. (Chat12_Prompt3_Topic4) | |
Absolutely, here is a structured curriculum to teach you the theoretical and practical basics of programming in Python. The plan covers several stages and includes lessons, practical exercises and self-tests: Level 1: Introduction to the Basics Lesson 1: Introduction to Programming
[...] Final Project Proposal:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwenke, N.; Söbke, H.; Kraft, E. Potentials and Challenges of Chatbot-Supported Thesis Writing: An Autoethnography. Trends High. Educ. 2023, 2, 611-635. https://doi.org/10.3390/higheredu2040037
Schwenke N, Söbke H, Kraft E. Potentials and Challenges of Chatbot-Supported Thesis Writing: An Autoethnography. Trends in Higher Education. 2023; 2(4):611-635. https://doi.org/10.3390/higheredu2040037
Chicago/Turabian StyleSchwenke, Nicolas, Heinrich Söbke, and Eckhard Kraft. 2023. "Potentials and Challenges of Chatbot-Supported Thesis Writing: An Autoethnography" Trends in Higher Education 2, no. 4: 611-635. https://doi.org/10.3390/higheredu2040037
APA StyleSchwenke, N., Söbke, H., & Kraft, E. (2023). Potentials and Challenges of Chatbot-Supported Thesis Writing: An Autoethnography. Trends in Higher Education, 2(4), 611-635. https://doi.org/10.3390/higheredu2040037