Polo-like Kinase 1 (PLK1) Inhibitors Targeting Anticancer Activity
Abstract
1. Introduction
2. Polo-like Kinase 1: A Promising Therapeutic Target for Cancer Treatment
2.1. PLK1 Structure
2.1.1. PLK1 Kinase Domain: Structural Organization and Crystallographic Evidence of the ATP Catalytic Site
2.1.2. PLK1 Polo-Box Domain (PBD): Recognition of Phosphorylated Substrates and Crystallographic Evidence
2.2. Role of PLK1 in Mitosis Process
2.3. PLK1 Overexpression and Implications in Tumor Metastasis
2.4. PLK1 Inhibitors
2.4.1. ATP-Competitive Inhibitors
2.4.2. Polo-Box Domain (PBD) Inhibitors
2.4.3. Perspectives on the Use of PLK1 Inhibitors in Cancer Therapy
3. Contributions of Computational Studies to the Design of PLK1 Inhibitors
3.1. Ligand-Based Drug Design (LBDD) Approaches
3.2. Structure-Based Drug Design (SBDD) Approaches
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BRCA2 | Breast Cancer Type 2 Susceptibility Protein |
| BUBR1 | Budding Uninhibited By Benzimidazoles 1 homolog |
| Cdc25 | Cell Division Cycle 25 |
| CDK1 | Cyclin-Dependent Kinase 1 |
| CLIP-170 | Cytoplasmic Linker Protein 170 |
| KD | Kinase Domain |
| LBDD | Ligand-Based Drug Design |
| MAPK | Mitogen-Activated Protein Kinase |
| MD | Molecular Dynamics |
| NDC80 | Nuclear Division Cycle 80 |
| NEDD1 | Neural precursor cell Expressed, Developmentally Downregulated 1 |
| PBD | Polo-Box Domain |
| PBIP1 | Polo-Box Domain-Interacting Protein 1 |
| PLK1 | Polo-Like Kinase 1 |
| PP2A | Protein Phosphatase 2A |
| QSAR | Quantitative Structure–Activity Relationship |
| SBDD | Structure-Based Drug Design |
References
- Zafar, A.; Khatoon, S.; Khan, M.J.; Abu, J.; Naeem, A. Advancements and Limitations in Traditional Anti-Cancer Therapies: A Comprehensive Review of Surgery, Chemotherapy, Radiation Therapy, and Hormonal Therapy. Discov. Oncol. 2025, 16, 607. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yang, R.; Zhang, Y.; Guo, M.; Takehiro, K.; Zhan, M.; Yang, L.; Wang, H. Molecular Mechanisms and Therapeutic Strategies in Overcoming Chemotherapy Resistance in Cancer. Mol. Biomed. 2025, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of Cancer Therapy: Oncogene and Non-Oncogene Addiction. Cell 2009, 136, 823–837. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Prakash, S.; Tyagi, P.; Singh, P.; Rajkumar; Singh, A.P. Recent Advancement in Drug Designing as Small Molecules in Targeted Cancer Therapy: Challenges and Future Directions. Curr. Cancer Drug Targets 2025, 25, 1364–1396. [Google Scholar] [CrossRef]
- Zheng, D.; Li, J.; Yan, H.; Zhang, G.; Li, W.; Chu, E.; Wei, N. Emerging Roles of Aurora-A Kinase in Cancer Therapy Resistance. Acta Pharm. Sin. B 2023, 13, 2826–2843. [Google Scholar] [CrossRef]
- Malumbres, M.; Barbacid, M. Cell Cycle, CDKs and Cancer: A Changing Paradigm. Nat. Rev. Cancer 2009, 9, 153–166. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Dong, P.; Gassler, N.; Taheri, M.; Baniahmad, A.; Dilmaghani, N.A. A Review on the Role of Cyclin Dependent Kinases in Cancers. BioMed Cent. 2022, 22, 325. [Google Scholar] [CrossRef]
- Kim, T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int. J. Mol. Sci. 2022, 23, 5252. [Google Scholar] [CrossRef]
- Chapagai, D.; Strebhardt, K.; Wyatt, M.D.; McInnes, C. Structural Regulation of PLK1 Activity: Implications for Cell Cycle Function and Drug Discovery. Cancer Gene Ther. 2025, 32, 608–621. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Zhou, J.; Ma, P.; Wang, S.; Li, N. Pan-Cancer Analysis of Polo-like Kinase Family Genes Reveals Polo-like Kinase 1 as a Novel Oncogene in Kidney Renal Papillary Cell Carcinoma. Heliyon 2024, 10, e29373. [Google Scholar] [CrossRef] [PubMed]
- Strebhardt, K. Multifaceted Polo-like Kinases: Drug Targets and Antitargets for Cancer Therapy. Nat. Rev. Drug Discov. 2010, 9, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Thai, N.Q.; Theodorakis, P.E.; Li, M.S. Fast Estimation of the Blood–Brain Barrier Permeability by Pulling a Ligand through a Lipid Membrane. J. Chem. Inf. Model. 2020, 60, 3057–3067. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Song, M.; Huang, C.; Yu, Q.; Jiang, G.; Jin, G.; Jia, X.; Shi, Z. Effectiveness, Safety and Pharmacokinetics of Polo-like Kinase 1 Inhibitors in Tumor Therapy: A Systematic Review and Meta-Analysis. Front. Oncol. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Raab, M.; Becker, S.; Sanhaji, M. Targeting Polo-like Kinase 1: Advancements and Future Directions in Anti-Cancer Drug Discovery. Expert Opin. Drug Discov. 2024, 19, 1153–1157. [Google Scholar] [CrossRef]
- Park, J.-E.; Lee, H.; Oliva, P.; Kirsch, K.; Kim, B.; Ahn, J.I.; Alverez, C.N.; Gaikwad, S.; Krausz, K.W.; O’Connor, R.; et al. Structural Optimization and Anticancer Activity of Polo-like Kinase 1 (Plk1) Polo-Box Domain (PBD) Inhibitors and Their Prodrugs. ACS Pharmacol. Transl. Sci. 2023, 6, 422–446. [Google Scholar] [CrossRef]
- Murugan, R.N.; Park, J.-E.; Kim, E.-H.; Shin, S.Y.; Cheong, C.; Lee, K.S.; Bang, J.K. Plk1-Targeted Small Molecule Inhibitors: Molecular Basis for Their Potency and Specificity. Mol. Cells 2011, 32, 209–220. [Google Scholar] [CrossRef]
- Shakeel, I.; Basheer, N.; Hasan, G.M.; Afzal, M.; Hassan, M.I. Polo-like Kinase 1 as an Emerging Drug Target: Structure, Function and Therapeutic Implications. J. Drug Target. 2021, 29, 168–184. [Google Scholar] [CrossRef]
- Ehlén, Å.; Martin, C.; Miron, S.; Julien, M.; Theillet, F.-X.X.; Ropars, V.; Sessa, G.; Beaurepere, R.; Boucherit, V.; Duchambon, P.; et al. Proper Chromosome Alignment Depends on BRCA2 Phosphorylation by PLK1. Nat. Commun. 2020, 11, 1819. [Google Scholar] [CrossRef]
- Casado, S.S. Caracterización Molecular de Los Mecanismos de Resistencia a Inhibidores de Polo-like Kinasa 1 En Cáncer Colorrectal. Papel de Simvastatina Como Modulador de La Resistencia. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2022. [Google Scholar]
- Fassolari, M. Estudio Funcional de La Familia de Enzimas Aurora Quinasa en Trypanosoma cruzi. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 2013. [Google Scholar]
- Xu, J.; Shen, C.; Wang, T.; Quan, J. Structural Basis for the Inhibition of Polo-like Kinase 1. Nat. Struct. Mol. Biol. 2013, 20, 1047–1053. [Google Scholar] [CrossRef]
- Macůrek, L.; Lindqvist, A.; Lim, D.; Lampson, M.A.; Klompmaker, R.; Freire, R.; Clouin, C.; Taylor, S.S.; Yaffe, M.B.; Medema, R.H. Polo-like Kinase-1 Is Activated by Aurora A to Promote Checkpoint Recovery. Nature 2008, 455, 119–123. [Google Scholar] [CrossRef]
- Zhang, Z.; Xing, X.; Guan, P.; Song, S.; You, G.; Xia, C.; Liu, T. Recent Progress in Agents Targeting Polo-like Kinases: Promising Therapeutic Strategies. Eur. J. Med. Chem. 2021, 217, 113314. [Google Scholar] [CrossRef]
- Steegmaier, M.; Hoffmann, M.; Baum, A.; Lénárt, P.; Petronczki, M.; Krššák, M.; Gürtler, U.; Garin-Chesa, P.; Lieb, S.; Quant, J.; et al. BI 2536, a Potent and Selective Inhibitor of Polo-like Kinase 1, Inhibits Tumor Growth In Vivo. Curr. Biol. 2007, 17, 316–322. [Google Scholar] [CrossRef]
- Kumar, S.; Kim, J. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis. Biomed Res. Int. 2015, 2015. [Google Scholar] [CrossRef]
- Li, Z.; Mei, S.; Liu, J.; Huang, J.; Yue, H.; Ge, T.; Wang, K.; He, X.; Gu, Y.-C.; Hu, C.; et al. Design, Synthesis, and Biological Evaluation of Novel Dihydropteridone Derivatives Possessing Oxadiazoles Moiety as Potent Inhibitors of PLK1. Eur. J. Med. Chem. 2023, 251, 115242. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Kim, J.; Lee, O.; Kim, H.; No, K.T. Leveraging the Fragment Molecular Orbital Method to Explore the PLK1 Kinase Binding Site and Polo-Box Domain for Potent Small-Molecule Drug Design. Int. J. Mol. Sci. 2023, 24, 15639. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-J.; Lin, C.-Y.; Ma, S.; Erikson, R.L. Functional Studies on the Role of the C-Terminal Domain of Mammalian Polo-like Kinase. Proc. Natl. Acad. Sci. 2002, 99, 1984–1989. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.-F.; Qian, W.; Li, F.; Yang, R.-H.; Wang, N.; Zheng, C.-B.; Li, C.-Y.; Gu, X.-R.; Yang, L.-M.; Liu, J.; et al. Discovery of ZFD-10 of a Pyridazino[4,5-b]Indol-4(5H)-One Derivative as an Anti-ZIKV Agent and a ZIKV NS5 RdRp Inhibitor. Antiviral Res. 2023, 214, 105607. [Google Scholar] [CrossRef]
- Kothe, M.; Kohls, D.; Low, S.; Coli, R.; Rennie, G.R.; Feru, F.; Kuhn, C.; Ding, Y.H. Selectivity-Determining Residues in Plk1. Chem. Biol. Drug Des. 2007, 70, 540–546. [Google Scholar] [CrossRef]
- Rudolph, D.; Steegmaier, M.; Hoffmann, M.; Grauert, M.; Baum, A.; Quant, J.; Haslinger, C.; Garin-Chesa, P.; Adolf, G.R. BI 6727, A Polo-like Kinase Inhibitor with Improved Pharmacokinetic Profile and Broad Antitumor Activity. Clin. Cancer Res. 2009, 15, 3094–3102. [Google Scholar] [CrossRef]
- Park, J.-E.; Hymel, D.; Burke, T.R., Jr.; Lee, K.S. Current Progress and Future Perspectives in the Development of Anti-Polo-like Kinase 1 Therapeutic Agents. F1000Research 2017, 6, 1024. [Google Scholar] [CrossRef] [PubMed]
- Raab, M.; Sanhaji, M.; Pietsch, L.; Béquignon, I.; Herbrand, A.K.; Süß, E.; Gande, S.L.; Caspar, B.; Kudlinzki, D.; Saxena, K.; et al. Modulation of the Allosteric Communication between the Polo-Box Domain and the Catalytic Domain in Plk1 by Small Compounds. ACS Chem. Biol. 2018, 13, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Reindl, W.; Yuan, J.; Krämer, A.; Strebhardt, K.; Berg, T. Inhibition of Polo-like Kinase 1 by Blocking Polo-Box Domain-Dependent Protein-Protein Interactions. Chem. Biol. 2008, 15, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Tamamura, H.; Burke, T.R. Affinity Enhancement of Polo-like Kinase 1 Polo Box Domain-Binding Ligands by a Bivalent Approach Using a Covalent Kinase-Binding Component. RSC Chem. Biol. 2024, 5, 721–728. [Google Scholar] [CrossRef]
- Gjertsen, B.T.; Schöffski, P. Discovery and Development of the Polo-like Kinase Inhibitor Volasertib in Cancer Therapy. Leukemia 2015, 29, 11–19. [Google Scholar] [CrossRef]
- Lowery, D.M.; Lim, D.; Yaffe, M.B. Structure and Function of Polo-like Kinases. Oncogene 2005, 24, 248–259. [Google Scholar] [CrossRef]
- Park, J.-E.; Soung, N.-K.; Johmura, Y.; Kang, Y.H.; Liao, C.; Lee, K.S.H.; Park, C.H.; Nicklaus, M.C.; Lee, K.S.H. Polo-Box Domain: A Versatile Mediator of Polo-like Kinase Function. Cell. Mol. Life Sci. 2010, 67, 1957–1970. [Google Scholar] [CrossRef]
- Cheng, K.-Y.; Lowe, E.D.; Sinclair, J.; Nigg, E.A.; Johnson, L.N. The Crystal Structure of the Human Polo-like Kinase-1 Polo Box Domain and Its Phospho-Peptide Complex. EMBO J. 2003, 22, 5757–5768. [Google Scholar] [CrossRef]
- Petronczki, M.; Lénárt, P.; Peters, J.M. Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev. Cell 2008, 14, 646–659. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, J.-E.; Kang, Y.H.; Kim, T.-S.; Bang, J.K. Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance. Mol. Cells 2014, 37, 286–294. [Google Scholar] [CrossRef]
- Archambault, V.; Glover, D.M. Polo-like Kinases: Conservation and Divergence in Their Functions and Regulation. Nat. Rev. Mol. Cell Biol. 2009, 10, 265–275. [Google Scholar] [CrossRef]
- Sharma, P.; Mahen, R.; Rossmann, M.; Stokes, J.E.; Hardwick, B.; Huggins, D.J.; Emery, A.; Kunciw, D.L.; Hyvönen, M.; Spring, D.R.; et al. A Cryptic Hydrophobic Pocket in the Polo-Box Domain of the Polo-like Kinase PLK1 Regulates Substrate Recognition and Mitotic Chromosome Segregation. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Abdelfatah, S.; Berg, A.; Böckers, M.; Efferth, T. A Selective Inhibitor of the Polo-Box Domain of Polo-like Kinase 1 Identified by Virtual Screening. J. Adv. Res. 2019, 16, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.E.H.; Cantley, L.C.; Yaffe, M.B. Proteomic Screen Finds PSer/PThr-Binding Domain Localizing Plk1 to Mitotic Substrates. Science 2003, 299, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.M.; Moulaei, T.; Lim, D.; Bang, J.K.; Park, J.E.; Shenoy, S.R.; Liu, F.; Kang, Y.H.; Liao, C.; Soung, N.K.; et al. Structural and Functional Analyses of Minimal Phosphopeptides Targeting the Polo-Box Domain of Polo-like Kinase 1. Nat. Struct. Mol. Biol. 2009, 16, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Yan, H.; Du, J.; Chen, X.; Shao, J.; Zhang, Y.; Xu, Z.; Jin, Y.; Lin, N.; Yang, B.; et al. PLK1 (Polo like Kinase 1)-Dependent Autophagy Facilitates Gefitinib-Induced Hepatotoxicity by Degrading COX6A1 (Cytochrome c Oxidase Subunit 6A1). Autophagy 2021, 17, 3221–3237. [Google Scholar] [CrossRef]
- Kalous, J.; Aleshkina, D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023, 12, 187. [Google Scholar] [CrossRef]
- Kong, D.; Farmer, V.; Shukla, A.; James, J.; Gruskin, R.; Kiriyama, S.; Loncarek, J. Centriole Maturation Requires Regulated Plk1 Activity during Two Consecutive Cell Cycles. J. Cell Biol. 2014, 206, 855–865. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.S.; Yang, X.; Wang, Y.Y.; Wang, Y.Y.; Turner, J.R.; Liu, X.S. Phosphorylation of CLIP-170 by Plk1 and CK2 Promotes Timely Formation of Kinetochore–Microtubule Attachments. EMBO J. 2010, 29, 2953–2965. [Google Scholar] [CrossRef]
- Liu, X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl. Oncol. 2015, 8, 185–195. [Google Scholar] [CrossRef]
- Colicino, E.G.; Hehnly, H. Regulating a Key Mitotic Regulator, Polo-like Kinase 1 (PLK1). Cytoskeleton 2018, 75, 481–494. [Google Scholar] [CrossRef]
- Spankuch-Schmitt, B.; Bereiter-Hahn, J.; Kaufmann, M.; Strebhardt, K. Effect of RNA Silencing of Polo-Like Kinase-1 (PLK1) on Apoptosis and Spindle Formation in Human Cancer Cells. JNCI J. Natl. Cancer Inst. 2002, 94, 1863–1877. [Google Scholar] [CrossRef]
- Shi, J.Q.; Lasky, K.; Shinde, V.; Stringer, B.; Qian, M.G.; Liao, D.; Liu, R.; Driscoll, D.; Nestor, M.T.; Amidon, B.S.; et al. MLN0905, a Small-Molecule PLK1 Inhibitor, Induces Antitumor Responses in Human Models of Diffuse Large B-Cell Lymphoma. Mol. Cancer Ther. 2012, 11, 2045–2053. [Google Scholar] [CrossRef]
- Stafford, J.M.; Wyatt, M.D.; McInnes, C. Inhibitors of the PLK1 Polo-Box Domain: Drug Design Strategies and Therapeutic Opportunities in Cancer. Expert Opin. Drug Discov. 2023, 18, 65–81. [Google Scholar] [CrossRef]
- Schmit, T.L.; Zhong, W.; Setaluri, V.; Spiegelman, V.S.; Ahmad, N. Targeted Depletion of Polo-Like Kinase (Plk) 1 Through Lentiviral ShRNA or a Small-Molecule Inhibitor Causes Mitotic Catastrophe and Induction of Apoptosis in Human Melanoma Cells. J. Invest. Dermatol. 2009, 129, 2843–2853. [Google Scholar] [CrossRef]
- Takeshita, T.; Asaoka, M.; Katsuta, E.; Li, Y.; Takabe, K. Abstract 5252: High Expression of PLK1, Polo-like Kinase 1, Is Significantly Associated with DNA Repair Deficiency, Inactivated TP53, and Worse Prognosis in Breast Cancer. Cancer Res. 2019, 11, 5252. [Google Scholar] [CrossRef]
- Stratmann, J.A.; Sebastian, M. Polo-like Kinase 1 Inhibition in NSCLC: Mechanism of Action and Emerging Predictive Biomarkers. Lung Cancer Targets Ther. 2019, 10, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, R.; Wang, Y.; Pan, L.; Luan, F.; Fu, G. PLK1 in Cancer Therapy: A Comprehensive Review of Immunomodulatory Mechanisms and Therapeutic Opportunities. Front. Immunol. 2025, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yan, F.; Huo, X.; Niu, M.-M. Discovery of a Potent PLK1-PBD Small-Molecule Inhibitor as an Anticancer Drug Candidate through Structure-Based Design. Molecules 2019, 24, 4351. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wu, H.; Liu, H.; Dong, H.; Niu, M.M.; Shi, K.; Wang, F. Discovery of Novel Dual-Targeting Inhibitors against PLK1-PBD and PLK4-PB3: Structure-Guided Pharmacophore Modelling, Virtual Screening, Molecular Docking, Molecular Dynamics Simulation, and Biological Evaluation. J. Enzyme Inhib. Med. Chem. 2025, 40. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Q.; Wang, X. PLK1, A Potential Target for Cancer Therapy. Transl. Oncol. 2017, 10, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, R.M.; Harb, H.S.; Abou Warda, A.E.; Salem-Bekhit, M.M.; Shakeel, F.; Alzahrani, S.A.; Madney, Y.M.; Boshra, M.S. Efficacy of the Early Treatment with Tocilizumab-Hydroxychloroquine and Tocilizumab-Remdesivir in Severe COVID-19 Patients. J. Infect. Public Health 2022, 15, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Frost, A.; Mross, K.; Steinbild, S.; Hedbom, S.; Unger, C.; Kaiser, R.; Trommeshauser, D.; Munzert, G. Phase I Study of the Plk1 Inhibitor BI 2536 Administered Intravenously on Three Consecutive Days in Advanced Solid Tumours. Curr. Oncol. 2012, 19, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Mross, K.; Dittrich, C.; Aulitzky, W.E.; Strumberg, D.; Schutte, J.; Schmid, R.M.; Hollerbach, S.; Merger, M.; Munzert, G.; Fleischer, F.; et al. A Randomised Phase II Trial of the Polo-like Kinase Inhibitor BI 2536 in Chemo-Nave Patients with Unresectable Exocrine Adenocarcinoma of the Pancreas-a Study within the Central European Society Anticancer Drug Research (CESAR) Collaborative Network. Br. J. Cancer 2012, 107, 280–286. [Google Scholar] [CrossRef]
- Gutteridge, R.E.A.; Ndiaye, M.A.; Liu, X.; Ahmad, N. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol. Cancer Ther. 2016, 15, 1427–1435. [Google Scholar] [CrossRef]
- Yim, H. Current Clinical Trials with Polo-like Kinase 1 Inhibitors in Solid Tumors. Anticancer. Drugs 2013, 24, 999–1006. [Google Scholar] [CrossRef]
- Bowles, D.W.; Diamond, J.R.; Lam, E.T.; Weekes, C.D.; Astling, D.P.; Anderson, R.T.; Leong, S.; Gore, L.; Varella-Garcia, M.; Vogler, B.W.; et al. Phase I Study of Oral Rigosertib (ON 01910.Na), a Dual Inhibitor of the PI3K and Plk1 Pathways, in Adult Patients with Advanced Solid Malignancies. Clin. Cancer Res. 2014, 20, 1656–1665. [Google Scholar] [CrossRef]
- Gumireddy, K.; Reddy, M.V.R.; Cosenza, S.C.; Nathan, R.B.; Baker, S.J.; Papathi, N.; Jiang, J.; Holland, J.; Reddy, E.P. ON01910, a Non-ATP-Competitive Small Molecule Inhibitor of Plk1, Is a Potent Anticancer Agent. Cancer Cell 2005, 7, 275–286. [Google Scholar] [CrossRef]
- Navada, S.C.; Fruchtman, S.M.; Odchimar-Reissig, R.; Demakos, E.P.; Petrone, M.E.; Zbyszewski, P.S.; Holland, J.F.; Silverman, L.R. A Phase 1/2 Study of Rigosertib in Patients with Myelodysplastic Syndromes (MDS) and MDS Progressed to Acute Myeloid Leukemia. Leuk. Res. 2018, 64, 10–16. [Google Scholar] [CrossRef]
- Ahn, D.H.; Barzi, A.; Ridinger, M.; Samu€elsz, E.; Subramanian, R.A.; Croucher, P.J.P.; Smeal, T.; Kabbinavar, F.F.; Lenz, H.J. Onvansertib in Combination with FOLFIRI and Bevacizumab in Second-Line Treatment of KRAS-Mutant Metastatic Colorectal Cancer: A Phase Ib Clinical Study. Clin. Cancer Res. 2024, 30, 2039–2047. [Google Scholar] [CrossRef]
- Weiss, G.J.; Jameson, G.; Von Hoff, D.D.; Valsasina, B.; Davite, C.; Di Giulio, C.; Fiorentini, F.; Alzani, R.; Carpinelli, P.; Di Sanzo, A.; et al. Phase I Dose Escalation Study of NMS-1286937, an Orally Available Polo-Like Kinase 1 Inhibitor, in Patients with Advanced or Metastatic Solid Tumors. Investig. New Drugs 2018, 36, 85–95. [Google Scholar] [CrossRef]
- Sarmah, D.; Meredith, W.O.; Weber, I.K.; Price, M.R.; Birtwistle, M.R. Predicting Anti-Cancer Drug Combination Responses with a Temporal Cell State Network Model. PLOS Comput. Biol. 2023, 19, e1011082. [Google Scholar] [CrossRef] [PubMed]
- Olmos, D.; Barker, D.; Sharma, R.; Brunetto, A.T.; Yap, T.A.; Taegtmeyer, A.B.; Barriuso, J.; Medani, H.; Degenhardt, Y.Y.; Allred, A.J.; et al. Phase I Study of GSK461364, a Specific and Competitive Polo-like Kinase 1 Inhibitor, in Patients with Advanced Solid Malignancies. Clin. Cancer Res. 2011, 17, 3420–3430. [Google Scholar] [CrossRef] [PubMed]
- Gilmartin, A.G.; Bleam, M.R.; Richter, M.C.; Erskine, S.G.; Kruger, R.G.; Madden, L.; Hassler, D.F.; Smith, G.K.; Gontarek, R.R.; Courtney, M.P.; et al. Distinct Concentration-Dependent Effects of the Polo-like Kinase 1-Specific Inhibitor GSK461364A, Including Differential Effect on Apoptosis. Cancer Res. 2009, 69, 6969–6977. [Google Scholar] [CrossRef] [PubMed]
- Ha, G.H.; Kim, D.Y.; Breuer, E.K.; Kim, C.K. Combination Treatment of Polo-Like Kinase 1 and Tankyrase-1 Inhibitors Enhances Anticancer Effect in Triple-Negative Breast Cancer Cells. Anticancer Res. 2018, 38, 1303–1310. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Xiang, W.; Liu, X.; Jiang, M.; Hu, J. Proteasome Activation Is Critical for Cell Death Induced by Inhibitors of Polo-like Kinase 1 (PLK1) in Multiple Cancers. Eur. J. Pharmacol. 2024, 972, 176558. [Google Scholar] [CrossRef]
- Wang, X.; Guo, L.; Yisha, Z.; Gu, A.; Liu, T. Polo-like Kinase 1 Inhibition Modulates Urinary Tract Smooth Muscle Contraction and Bladder Cell Transcriptional Programs. Cytoskeleton 2025, 82, 58–70. [Google Scholar] [CrossRef]
- Chilamakuri, R.; Rouse, D.C.; Agarwal, S. Inhibition of Polo-like Kinase 1 by HMN-214 Blocks Cell Cycle Progression and Inhibits Neuroblastoma Growth. Pharmaceuticals 2022, 15, 523. [Google Scholar] [CrossRef]
- Garland, L.L.; Taylor, C.; Pilkington, D.L.; Cohen, J.L.; Von Hoff, D.D. A Phase I Pharmacokinetic Study of HMN-214, a Novel Oral Stilbene Derivative with Polo-like Kinase-1-Interacting Properties, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2006, 12, 5182–5189. [Google Scholar] [CrossRef]
- Yuan, J.; Sanhaji, M.; Krmer, A.; Reindl, W.; Hofmann, M.; Kreis, N.N.; Zimmer, B.; Berg, T.; Strebhardt, K. Polo-Box Domain Inhibitor Poloxin Activates the Spindle Assembly Checkpoint and Inhibits Tumor Growth in Vivo. Am. J. Pathol. 2011, 179, 2091–2099. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Li, D.; Jiang, J.; Wang, Y.; Si, S. Identification of a Novel Polo-like Kinase 1 Inhibitor That Specifically Blocks the Functions of Polo-Box Domain. Oncotarget 2017, 8, 1234–1246. [Google Scholar] [CrossRef]
- Yin, Z.; Song, Y.; Rehse, P.H. Thymoquinone Blocks PSer/PThr Recognition by Plk1 Polo-Box Domain as a Phosohate Mimic. ACS Chem. Biol. 2013, 8, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Zhang, Z.; Zhang, D.; Zhang, M.; Wang, M.; Cai, P.; Huang, Y.; Song, Y. PLK1 Inhibitors for the Treatment of Colorectal Cancer. Ann. Med. Surg. 2025, 87, 4165–4172. [Google Scholar] [CrossRef] [PubMed]
- Burkard, M.E.; Santamaria, A.; Jallepalli, P.V. Enabling and Disabling Polo-like Kinase 1 Inhibition through Chemical Genetics. ACS Chem. Biol. 2012, 7, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Srinivasrao, G.; Park, J.E.; Kim, S.; Ahn, M.; Cheong, C.; Nam, K.Y.; Gunasekaran, P.; Hwang, E.; Kim, N.H.; Shin, S.Y.; et al. Design and Synthesis of a Cell-Permeable, Drug-like Small Molecule Inhibitor Targeting the Polo-Box Domain of Polo-like Kinase 1. PLoS ONE 2014, 9, 1–14. [Google Scholar] [CrossRef]
- Abdelfatah, S.; Berg, A.; Huang, Q.; Yang, L.J.; Hamdoun, S.; Klinger, A.; Greten, H.J.; Fleischer, E.; Berg, T.; Wong, V.K.W.; et al. MCC1019, a Selective Inhibitor of the Polo-Box Domain of Polo-like Kinase 1 as Novel, Potent Anticancer Candidate. Acta Pharm. Sin. B 2019, 9, 1021–1034. [Google Scholar] [CrossRef]
- Tan, Y.S.; Śledź, P.; Lang, S.; Stubbs, C.J.; Spring, D.R.; Abell, C.; Best, R.B. Using Ligand-Mapping Simulations to Design a Ligand Selectively Targeting a Cryptic Surface Pocket of Polo-Like Kinase 1. Angew. Chemie Int. Ed. 2012, 51, 10078–10081. [Google Scholar] [CrossRef]
- Qin, T.; Chen, F.; Zhuo, X.; Guo, X.; Yun, T.; Liu, Y.; Zhang, C.; Lai, L. Discovery of Novel Polo-Like Kinase 1 Polo-Box Domain Inhibitors to Induce Mitotic Arrest in Tumor Cells. J. Med. Chem. 2016, 59, 7089–7096. [Google Scholar] [CrossRef]
- Zhou, N.; Zheng, C.; Tan, H.; Luo, L. Identification of PLK1-PBD Inhibitors from the Library of Marine Natural Products: 3D QSAR Pharmacophore, ADMET, Scaffold Hopping, Molecular Docking, and Molecular Dynamics Study. Mar. Drugs 2024, 22, 83. [Google Scholar] [CrossRef]
- Varghese, J.; Mcinnes, C.; Wyatt, M.D. Non-Peptidic, Polo Box Domain-Targeted Inhibitors of PLK1 Block Kinase Activity, Induce Its Degradation and Target Resistant. Cells 2023, 64, 9916–9925. [Google Scholar] [CrossRef]
- Park, J.-E.; Kirsch, K.; Lee, H.; Oliva, P.; Ahn, J.I.; Ravishankar, H.; Zeng, Y.; Fox, S.D.; Kirby, S.A.; Badhwar, P.; et al. Specific Inhibition of an Anticancer Target, Polo-like Kinase 1, by Allosterically Dismantling Its Mechanism of Substrate Recognition. Proc. Natl. Acad. Sci. USA 2023, 120, e2305037120. [Google Scholar] [CrossRef]
- Al Shehri, Z.S.; Alshehri, F.F. Machine Learning-Based Virtual Screening and Molecular Modeling Reveal Potential Natural Inhibitors for Non-Small Cell Lung Cancer. Crystals 2025, 15, 383. [Google Scholar] [CrossRef]
- Bhujbal, S.P.; Kim, H.; Bae, H.; Hah, J.-M. Design and Synthesis of Aminopyrimidinyl Pyrazole Analogs as PLK1 Inhibitors Using Hybrid 3D-QSAR and Molecular Docking. Pharmaceuticals 2022, 15, 1170. [Google Scholar] [CrossRef]
- Er-rajy, M.; El Fadili, M.; Imtara, H.; Saeed, A.; Ur Rehman, A.; Zarougui, S.; Abdullah, S.A.; Alahdab, A.; Parvez, M.K.; Elhallaoui, M. 3D-QSAR Studies, Molecular Docking, Molecular Dynamic Simulation, and ADMET Proprieties of Novel Pteridinone Derivatives as PLK1 Inhibitors for the Treatment of Prostate Cancer. Life 2023, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Wang, T.; Feng, Y. Drug Design and Molecular Docking Simulations of Polo-like Kinase 1 Inhibitors Based on QSAR Study. New J. Chem. 2020, 44, 21134–21145. [Google Scholar] [CrossRef]
- Caba, K.; Tran-Nguyen, V.K.; Rahman, T.; Ballester, P.J. Comprehensive Machine Learning Boosts Structure-Based Virtual Screening for PARP1 Inhibitors. J. Cheminform. 2024, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Luttens, A.; Cabeza de Vaca, I.; Sparring, L.; Brea, J.; Martínez, A.L.; Kahlous, N.A.; Radchenko, D.S.; Moroz, Y.S.; Loza, M.I.; Norinder, U.; et al. Rapid Traversal of Vast Chemical Space Using Machine Learning-Guided Docking Screens. Nat. Comput. Sci. 2025, 5, 301–312. [Google Scholar] [CrossRef]
- Gao, F.; Huang, Y.; Yang, M.; He, L.; Yu, Q.; Cai, Y.; Shen, J.; Lu, B. Machine Learning-Based Cell Death Marker for Predicting Prognosis and Identifying Tumor Immune Microenvironment in Prostate Cancer. Heliyon 2024, 10, e37554. [Google Scholar] [CrossRef]
- Mohimani, H.; Gurevich, A.; Mikheenko, A.; Garg, N.; Nothias, L.-F.; Ninomiya, A.; Kentaro Takada, P.C.D.; Pevzner, P.A. Molecular Dynamics for All. Physiol. Behav. 2017, 176, 139–148. [Google Scholar]
- Gao, W.; Ma, X.; Yang, H.; Luan, Y.; Ai, H. Molecular Engineering and Activity Improvement of Acetylcholinesterase Inhibitors: Insights from 3D-QSAR, Docking, and Molecular Dynamics Simulation Studies. J. Mol. Graph. Model. 2022, 116, 108239. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Esposito-Verza, A.; Musacchio, A.; Conti, D. Decoding the Language of PLK1 Docking Motifs and Activation Mechanisms. Trends Cell Biol. 2025, 1–16. [Google Scholar] [CrossRef]
- Xu, Z.; Guan, L.; Wang, Y.; Niu, M.-M.; Ruan, Y.; Xu, C.; Yang, L. Discovery of a Novel PLK1 Inhibitor with High Inhibitory Potency Using a Combined Virtual Screening Strategy. J. Enzyme Inhib. Med. Chem. 2025, 40. [Google Scholar] [CrossRef] [PubMed]
- Sadybekov, A.V.; Katritch, V. Computational Approaches Streamlining Drug Discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Shahin, R.; Jaafreh, S.; Azzam, Y. Tracking Protein Kinase Targeting Advances: Integrating QSAR into Machine Learning for Kinase-Targeted Drug Discovery. Futur. Sci. OA 2025, 11. [Google Scholar] [CrossRef] [PubMed]
- AlAjmi, M.F.; Rehman, M.T.; Hussain, A.; Rather, G.M. Pharmacoinformatics Approach for the Identification of Polo-like Kinase-1 Inhibitors from Natural Sources as Anti-Cancer Agents. Int. J. Biol. Macromol. 2018, 116, 173–181. [Google Scholar] [CrossRef]
- Singh, A.; Malik, J.; Singh, G. Investigation of Flavonoids Derivatives as PLK-1 Targeted Inhibitor and Their Potential Against Lung Tumorigenesis: In-Silico Molecular Docking. Sch. Acad. J. Pharm. 2025, 14, 51–64. [Google Scholar] [CrossRef]
- Olawale, F.; Iwaloye, O.; Elekofehinti, O.O. Virtual Screening of Natural Compounds as Selective Inhibitors of Polo-like Kinase-1 at C-Terminal Polo Box and N-Terminal Catalytic Domain. J. Biomol. Struct. Dyn. 2022, 40, 13606–13624. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Chen, W.; Sun, J.; Zhao, Y.; Wang, G.; Wang, B.; Pan, Y.; Zhang, J.; Xu, J. Integrating Network Pharmacology, Bioinformatics, and Experimental Validation to Unveil the Molecular Targets and Mechanisms of Galangin for Treating Hepatocellular Carcinoma. BMC Complement. Med. Ther. 2024, 24, 1–13. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguado-Herrera, D.B.; Cañizares-Carmenate, Y.; Silva-Júnior, E.F.d. Polo-like Kinase 1 (PLK1) Inhibitors Targeting Anticancer Activity. Kinases Phosphatases 2025, 3, 23. https://doi.org/10.3390/kinasesphosphatases3040023
Aguado-Herrera DB, Cañizares-Carmenate Y, Silva-Júnior EFd. Polo-like Kinase 1 (PLK1) Inhibitors Targeting Anticancer Activity. Kinases and Phosphatases. 2025; 3(4):23. https://doi.org/10.3390/kinasesphosphatases3040023
Chicago/Turabian StyleAguado-Herrera, Dina Bárbara, Yudith Cañizares-Carmenate, and Edeildo Ferreira da Silva-Júnior. 2025. "Polo-like Kinase 1 (PLK1) Inhibitors Targeting Anticancer Activity" Kinases and Phosphatases 3, no. 4: 23. https://doi.org/10.3390/kinasesphosphatases3040023
APA StyleAguado-Herrera, D. B., Cañizares-Carmenate, Y., & Silva-Júnior, E. F. d. (2025). Polo-like Kinase 1 (PLK1) Inhibitors Targeting Anticancer Activity. Kinases and Phosphatases, 3(4), 23. https://doi.org/10.3390/kinasesphosphatases3040023

