Previous Issue
Volume 3, September
 
 

Kinases Phosphatases, Volume 3, Issue 4 (December 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 7311 KB  
Article
Bioinformatic Investigation of Regulatory Elements in the Core Promoters of CK2 Genes and Pseudogene
by Nicholas G. Wilson, Jesse S. Basra and Isabel Dominguez
Kinases Phosphatases 2025, 3(4), 22; https://doi.org/10.3390/kinasesphosphatases3040022 - 4 Nov 2025
Abstract
Protein kinase CK2 is an important regulator of cell, embryo, and organism function whose transcript levels are often dysregulated in disease. Previous studies have primarily focused on the regulation of CK2 gene expression via the proximal promoter. Here, we analyzed the core promoter [...] Read more.
Protein kinase CK2 is an important regulator of cell, embryo, and organism function whose transcript levels are often dysregulated in disease. Previous studies have primarily focused on the regulation of CK2 gene expression via the proximal promoter. Here, we analyzed the core promoter of the CK2 genes and pseudogene to assess the structure and potential regulatory elements. Our analysis showed that CSNK2A1 contained 14 exons, rather than 13 exons as previously reported. Using FANTOM5 and DBTTS data, we found that transcription start sites were broadly distributed across a 100-nucleotide region in the CK2 gene core promoters, consistent with “broad” class promoter architecture. Using these databases, we found a dissimilar transcription start site usage between adult and cancer tissues compared to fetal tissues for each of the CK2 gene promoters. A further analysis of the CK2 gene core promoter subregions showed instances of core promoter subregion switching. All CK2 gene core promoters contained canonical and non-canonical initiator motifs, suggesting their potential as dual-initiator core promoters, while CSNK2A3 only had canonical initiator motifs. Additionally, all CK2 gene core promoters contain DCE motifs and pause buttons. In contrast, Wnt/β-catenin target genes c-MYC and CCND1 had DPEs, which can be regulated by protein kinase CK2. Collectively, our data provides new insights into the transcriptional regulation of CK2 genes and opens new avenues for research. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research—2nd Edition)
Show Figures

Graphical abstract

17 pages, 1080 KB  
Review
Metal–Organic Frameworks for Enzyme Modulation in Protein Kinase and Phosphatase Regulation—Mechanisms and Biomedical Applications
by Azizah Alamro and Thanih Balbaied
Kinases Phosphatases 2025, 3(4), 21; https://doi.org/10.3390/kinasesphosphatases3040021 - 30 Oct 2025
Viewed by 188
Abstract
Metal–organic frameworks (MOFs) have been increasingly recognized as promising platforms for enzyme modulation, owing to their tunable porosity, high surface area, and versatile chemical functionality. In this review, the potential of MOFs for the inhibition and modulation of protein kinases and phosphatases—key regulators [...] Read more.
Metal–organic frameworks (MOFs) have been increasingly recognized as promising platforms for enzyme modulation, owing to their tunable porosity, high surface area, and versatile chemical functionality. In this review, the potential of MOFs for the inhibition and modulation of protein kinases and phosphatases—key regulators of cellular signaling and disease progression—is examined. The structural fundamentals of MOFs are outlined, followed by a discussion of common synthesis strategies, including solvothermal, microwave-assisted, sonochemical, and mechanochemical methods. Emphasis is placed on how synthesis conditions influence critical features such as particle size, crystallinity, surface chemistry, and functional group accessibility, all of which impact biological performance. Four primary mechanisms of MOF–enzyme interaction are discussed: surface adsorption, active site coordination, catalytic mimicry, and allosteric modulation. Each mechanism is linked to distinct physicochemical parameters, including pore size, surface charge, and metal node identity. Special focus is given to biologically relevant metal centers such as Zr4+, Ce4+, Cu2+, Fe3+, and Ti4+, which have been shown to contribute to both MOF stability and enzymatic inhibition through Lewis acid or redox-mediated mechanisms. Recent in vitro studies are reviewed, in which MOFs demonstrated selective inhibition of disease-relevant enzymes with minimal cytotoxicity. Despite these advancements, several limitations have been identified, including scalability challenges, limited physiological stability, and potential off-target effects. Strategies such as post-synthetic modification, green synthesis, and biomimetic surface functionalization are being explored to overcome these barriers. Through an integration of materials science, coordination chemistry, and molecular biology, this review aims to provide a comprehensive perspective on the rational design of MOFs for targeted enzyme inhibition in therapeutic contexts. Full article
Show Figures

Figure 1

16 pages, 2375 KB  
Article
Mass Spectrometry and 3D Modeling Indicate the SBK2 Kinase Phosphorylates Splicing Factor SRSF7 to Regulate Cardiac Development
by Mark Bouska, Eduardo Callegari, Daniela Paez and Xuejun Wang
Kinases Phosphatases 2025, 3(4), 20; https://doi.org/10.3390/kinasesphosphatases3040020 - 23 Sep 2025
Viewed by 458
Abstract
SH3 Domain Binding Kinase Family Member 2 (SBK2) is a critical kinase in atrial cardiomyocyte differentiation. However, its phospho-targets, its role in ventricle function, and its role in cardiac disease progression are unknown. Notably, SBK2 has been shown to be downregulated in the [...] Read more.
SH3 Domain Binding Kinase Family Member 2 (SBK2) is a critical kinase in atrial cardiomyocyte differentiation. However, its phospho-targets, its role in ventricle function, and its role in cardiac disease progression are unknown. Notably, SBK2 has been shown to be downregulated in the ventricular myocardium of several mouse models that recapitulate human desmin-related cardiomyopathies. To restore SBK2 expression, adenoviruses were constructed to promote cardiomyocyte-restricted SBK2 expression and injected at postnatal day 0. This significantly increased ejection fraction at 1 month of age relative to control hearts. However, in 3-month nontransgenic (NTG) and desmin-related cardiomyopathy hearts, the overexpression of SBK2 opposed increases in ejection fraction and left ventricular posterior wall thickness. These findings provide the first in vivo evidence that SBK2 plays a vital role in left ventricular function. To elucidate the molecular mechanism behind the physiological effects of SBK2 on the heart, we performed mass spectrometry combined with phospho-enrichment on ventricular tissue with and without SBK2 overexpression. We identified multiple phosphorylation sites on SBK2 and used AlphaFold3 to model how this phosphorylation likely affects SBK2’s role in phosphorylating the splicing factor SRSF7. We propose a novel mechanism by which SBK2 regulates splicing to promote cardiomyocyte development. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop