Previous Issue
Volume 4, March
 
 

Grasses, Volume 4, Issue 2 (June 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 726 KiB  
Article
An Economic Evaluation of an Intensive Silvo-Pastoral System in San Martín, Peru
by John Jairo Junca Paredes, Sandra Guisela Durango Morales and Stefan Burkart
Grasses 2025, 4(2), 21; https://doi.org/10.3390/grasses4020021 - 20 May 2025
Abstract
The cattle sector plays a critical role in Peru’s agricultural economy, yet it faces challenges related to low productivity and environmental degradation. Sustainable alternatives like silvo-pastoral systems (SPSs) offer promising solutions to enhance both economic returns and ecological outcomes in cattle farming. This [...] Read more.
The cattle sector plays a critical role in Peru’s agricultural economy, yet it faces challenges related to low productivity and environmental degradation. Sustainable alternatives like silvo-pastoral systems (SPSs) offer promising solutions to enhance both economic returns and ecological outcomes in cattle farming. This study examines the economic viability of an intensive SPS (SPSi) compared to traditional monoculture grass systems in San Martín, Peru. The SPSi under study is in the evaluation phase, integrates grasses, legumes, shrubs, and trees, and has the potential to enhance cattle farming profitability while simultaneously offering environmental benefits such as improved soil health and reduced greenhouse gas emissions. Through a discounted cash flow model over an eight-year period, key profitability indicators—Net Present Value (NPV), Internal Rate of Return (IRR), Benefit–Cost Ratio (BC), and payback period—were estimated for four dual-purpose cattle production scenarios: a traditional system and three SPSi scenarios (pessimistic, moderate, and optimistic). Monte Carlo simulations were conducted to assess risk, ensuring robust results. The results show that the NPV for the traditional system was a modest USD 61, while SPSi scenarios ranged from USD 9564 to USD 20,465. The IRR improved from 8.17% in the traditional system to between 26.63% and 30.33% in SPSi scenarios, with a shorter payback period of 4.5 to 5.8 years, compared to 7.98 years in the traditional system. Additionally, the SPSi demonstrated a 30% increase in milk production and a 50% to 250% rise in stocking rates per hectare. The study recommends, subject to pending validations through field trials, promoting SPSi adoption through improved access to credit, technical assistance, and policy frameworks that compensate farmers for ecosystem services. Policymakers should also implement monitoring mechanisms to mitigate unintended consequences, such as deforestation, ensuring that SPSi expansion aligns with sustainable land management practices. Overall, the SPSi presents a viable solution for achieving economic resilience and environmental sustainability in Peru’s cattle sector. Full article
Show Figures

Figure 1

11 pages, 920 KiB  
Article
Phosphorus Use Efficiency: Morphogenetic and Productive Responses of Brachiaria decumbens Genotypes (Syn: Urochloa decumbens)
by Néstor Eduardo Villamizar Frontado, Gelson dos Santos Difante, Alexandre Romeiro de Araújo, Denise Baptaglin Montagner, Jéssica Gomes Rodrigues, Gabriela Oliveira de Aquino Monteiro, Manuel Cláudio Motta Macedo, Marislayne de Gusmão Pereira, Amanda Eunice Silva Moura and Eduardo Weisz Arze
Grasses 2025, 4(2), 20; https://doi.org/10.3390/grasses4020020 - 14 May 2025
Viewed by 169
Abstract
This study evaluated the phosphorus use efficiency (PUE) in two genotypes and one cultivar of Brachiaria decumbens (HD1, HD4, and Basilisk) and the productive, morphogenic, and structural responses. The experimental design used was randomized blocks with five P rates (0, 13, 26, 52, [...] Read more.
This study evaluated the phosphorus use efficiency (PUE) in two genotypes and one cultivar of Brachiaria decumbens (HD1, HD4, and Basilisk) and the productive, morphogenic, and structural responses. The experimental design used was randomized blocks with five P rates (0, 13, 26, 52, and 104 mg dm−3). There was no forage × P rate interaction (p > 0.05), but the P rates affected the leaf appearance rate (TAR; p = 0.0314), leaf life span (LLS; p = 0.0207), phyllochron (PC; p = 0.0207), leaf elongation rate (LER; p = 0.0350), stem elongation rate (SER; p = 0.0109), and the number of live leaves (NLL; p = 0.0033). The LAR, LLS, and PC followed quadratic trends, increasing up to 52 mg dm−3, while the PC declined. The FLL, SER, and NLL increased linearly. HD1 had the highest final leaf length, LER, and NLL, while Basilisk had the lowest. There was an interaction for tiller population density (p = 0.0431), with increases of 0.26, 0.28, and 0.24 tillers for HD4, HD1, and Basilisk, respectively. Forage production (FP) increased with P, gaining 0.51 g of DM for each mg dm−3 of P added. The HD1 genotype showed higher FLL, LER, NLL, FP, and higher PUE than the HD4 genotype and the Basilisk cultivar. HD1 was more responsive to higher P rates for root production, indicating a greater need for nutrients to reach its productive potential. Phosphate fertilization positively influenced morphogenesis and forage production in the evaluated genotypes and cultivars. The HD1 genotype stood out in relation to the others, showed superiority in forage and root production, and demonstrated greater efficiency in the use of P, at a dose of 13 mg dm−3. Full article
Show Figures

Figure 1

15 pages, 2715 KiB  
Article
Overcoming Forage Challenges in Mesophytic Grasslands—The Advantages of Lotus tenuis
by María Elena Vago, Paula Virginia Fernández, Juan Pedro Ezquiaga, Santiago Javier Maiale, Andrés Alberto Rodriguez, Juan Manuel Acosta, Maximiliano Gortari, Oscar Adolfo Ruiz and Marina Ciancia
Grasses 2025, 4(2), 19; https://doi.org/10.3390/grasses4020019 - 7 May 2025
Viewed by 146
Abstract
Previous studies in the Salado River Basin (Argentina) demonstrated that the introduced forage species, Lotus tenuis Waldst. & Kit. ex Wild. (Fabaceae), possesses high tolerance to abiotic stresses—including flooding, alkalinity, salinity, and drought. The efficient biological fixation of nitrogen in a region [...] Read more.
Previous studies in the Salado River Basin (Argentina) demonstrated that the introduced forage species, Lotus tenuis Waldst. & Kit. ex Wild. (Fabaceae), possesses high tolerance to abiotic stresses—including flooding, alkalinity, salinity, and drought. The efficient biological fixation of nitrogen in a region with a scarce presence of native legumes is one of its advantages. Despite these qualities, a year-long characterization of cell wall (CW) polysaccharides in Lotus tenuis and their relationship with the high nutritional quality is missing. In this study, seasonal parametric investigations of L. tenuis, regarding its photosynthetic and ionic status, modifications in CW composition, and concomitant nutritional quality, were performed. Our results demonstrate the high plant digestibility and protein content of this legume, even in summer, when most accompanying species reduce their forage quality. Regarding gas production kinetics (in vitro production is a proxy for the animal rumen’s output), spring biomass had the highest values. The CW material yields are similar throughout the year, but with differences in polysaccharide composition. In summer and winter, pectins predominate, while in the regrowth periods (spring and autumn), pectins and β-glucans are found in similar amounts. This work confirms that Lotus tenuis can help optimize grassland productivity in challenging mesophytic terrains to increase livestock productivity through environmentally friendly services. Full article
Show Figures

Figure 1

13 pages, 1760 KiB  
Article
Effect of Light on Yield, Nutritive Value of Brachiaria decumbens, and Soil Properties in Silvopastoral Systems, Peruvian Amazon
by María Díaz, Julio Alegre, Carlos Gómez, Carlos García and Cesar Arévalo-Hernández
Grasses 2025, 4(2), 18; https://doi.org/10.3390/grasses4020018 - 6 May 2025
Viewed by 207
Abstract
Silvopastoral systems, integrating trees, forages, and livestock, are recognized as a sustainable approach to livestock production. This study evaluated the effect of shade vs. open-field conditions on the yield and nutritive value of Brachiaria decumbens in three systems—Inga edulis (guaba), Eucalyptus torrelliana [...] Read more.
Silvopastoral systems, integrating trees, forages, and livestock, are recognized as a sustainable approach to livestock production. This study evaluated the effect of shade vs. open-field conditions on the yield and nutritive value of Brachiaria decumbens in three systems—Inga edulis (guaba), Eucalyptus torrelliana (eucalyptus), and Cedrelinga cateniformis (tornillo)—in the Peruvian Amazon. A 3 × 2 factorial design with three replicates was used to analyze forage production (mass and mass by harvest), quality (NDF, protein, digestibility, metabolizable energy), and soil variables (bulk density, pH, organic matter, moisture, porosity, etc.). Most interactions were non-significant, except forage mass by harvest (FMH, p = 0.0328). B. decumbens in the guaba system under shade had the highest FMH (1406 kg DM ha−1), while the tornillo system showed elevated protein (10.63%). Protein was significantly higher under shade (9.55%) than in open field. Eucalyptus increased neutral detergent fiber (69.72%), whereas guaba provided the greatest metabolizable energy (8.08 MJ kg−1 DM). Soil analyses revealed improved moisture and CEC under guaba, while tornillo boosted soil phosphorus. Principal component analysis confirmed these associations (82.3% variance). B. decumbens grown under the shade of guaba or tornillo appears to enhance forage productivity and soil fertility, representing a promising strategy for sustainable tropical livestock management. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

20 pages, 1009 KiB  
Article
Dryland Fodder Radish Genotypes: Planting Date Effects on Nutritive Value and In-Vitro Dry Matter Degradability in Midlands of KwaZulu-Natal, South Africa
by Lwando Mbambalala, Thamsanqa Doctor Empire Mpanza, Tlou Julius Tjelele, Lusanda Ncisana, Sphesihle Mkhungo, Lucky Sithole, Mpho Siennah Nzeru, Patrick Ngwako Rakau, Zikhona Theodora Rani-Kamwendo and Ntuthuko Raphael Mkhize
Grasses 2025, 4(2), 17; https://doi.org/10.3390/grasses4020017 - 1 May 2025
Viewed by 210
Abstract
Erratic rainfall and extended dry periods challenge forage production and livestock feed sustainability in dryland agriculture regions. This study investigated the effects of planting dates and genotype selection on the nutritive value and in-vitro dry matter degradability (IVDMD) of fodder radish genotypes in [...] Read more.
Erratic rainfall and extended dry periods challenge forage production and livestock feed sustainability in dryland agriculture regions. This study investigated the effects of planting dates and genotype selection on the nutritive value and in-vitro dry matter degradability (IVDMD) of fodder radish genotypes in Midlands of KwaZulu-Natal, South Africa. The experiment followed a completely randomised design with three fodder radish genotypes (Endurance, Line 2, and Nooitgedacht) and five planting dates (December, January, February, March and May). After three months of growth in each planting date, crops were harvested, prepared and analysed for various nutritional parameters including crude protein, fibre content, and IVDMD. Results revealed that December had the highest crude protein (28–31%) across genotypes, while March plantings optimised total non-structural carbohydrates (13.31%) and metabolisable energy (6.64 MJ/kg). The Nooitgedacht genotype demonstrated improved performance, achieving higher IVDMD of 85.54% for leaves in December plantings and 77.51% for tubers in February plantings. Significant interactions between planting dates and genotypes were observed for ash, crude protein, and cellulose in leaves. In conclusion, these findings highlight the crucial role of planting date selection and genotype choice in optimising fodder radish production under dryland conditions, offering valuable insights for enhancing livestock productivity and supporting sustainable rural livelihoods. Full article
Show Figures

Figure 1

33 pages, 845 KiB  
Review
Sustainable Warm-Climate Forage Legumes: Versatile Products and Services
by James P. Muir, José C. Batista Dubeux Junior, Mércia V. Ferreira dos Santos, Jamie L. Foster, Rinaldo L. Caraciolo Ferreira, Mário de Andrade Lira, Jr., Barbara Bellows, Edward Osei, Bir B. Singh and Jeff A. Brady
Grasses 2025, 4(2), 16; https://doi.org/10.3390/grasses4020016 - 18 Apr 2025
Viewed by 416
Abstract
Forage legumes, besides their use as ruminant feed supplements, contribute to other agricultural, forestry and natural ecosystems’ sustainability around the world. Our objective in this summary is to emphasize that versatility in the face of biotic, abiotic and socio-economic variability is among the [...] Read more.
Forage legumes, besides their use as ruminant feed supplements, contribute to other agricultural, forestry and natural ecosystems’ sustainability around the world. Our objective in this summary is to emphasize that versatility in the face of biotic, abiotic and socio-economic variability is among the most important traits that forage legumes contribute to sustaining human populations in those diverse ecosystems. Forage legumes could contribute even more to agroecosystems if we 1. consider ecosystem services as well as food, feed and fuel production; 2. more fully exploit what we already know about forage legumes’ multiple uses; and 3. focus greater attention and energy exploring and expanding versatility in currently used and novel versatile species. To draw attention to the importance of this versatility to sustainable grasslands, here we review multiple legumes’ roles as forage, bioenergy, pulses (legume seeds for human consumption), pharmaceuticals and cover crops as well as environmental services, in particular soil health, C sequestration and non-industrial organic N. The major points we single out as distinguishing sustainable versatile forage legumes include (1) multiple uses; (2) adaptation to a wide range of edaphoclimatic conditions; (3) flexible economic contributions; and (4) how genomics can harness greater legume versatility. We predict that, because of this versatility, forage legumes will become ever more important as climates change and human pressures on sustainable agro-environments intensify. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

27 pages, 4401 KiB  
Article
Herbage Responses and Grazing Performance of Mature Horses in Warm-Season Perennial Grass–Legume Mixed Pastures
by Ana Caroline Cerqueira de Melo Vasco, Erick R. da Silva Santos, Jose C. Batista Dubeux Junior, Lynn E. Sollenberger, Marcelo O. Wallau, Helio Lauro Soares Vasco Neto, Jill M. Lance, Lori K. Warren and Carissa L. Wickens
Grasses 2025, 4(2), 15; https://doi.org/10.3390/grasses4020015 - 14 Apr 2025
Viewed by 230
Abstract
The pasture–animal interface of warm-season perennial grass–legume mixed pastures has never been investigated in forage-based equine systems. Therefore, this 2-year study investigated the herbage and animal responses under 84-day continuous stocking in mixed pastures of rhizoma peanut (RP, Arachis glabrata Benth) and bahiagrass [...] Read more.
The pasture–animal interface of warm-season perennial grass–legume mixed pastures has never been investigated in forage-based equine systems. Therefore, this 2-year study investigated the herbage and animal responses under 84-day continuous stocking in mixed pastures of rhizoma peanut (RP, Arachis glabrata Benth) and bahiagrass (BG, Paspalum notatum Flüggé) with 30 kg nitrogen (N) ha−1 (BG-RP) compared to BG pastures fertilized with 120 kg N ha−1 (BG-N120) and no N (BG-N0). Measurements were taken every 14 days, except for intake and in vivo digestibility, which were measured every 28 days. BG-N120 had the highest stocking rate (p = 0.01; 3.7 AU ha−1) in 2019, while BG-N0 had the lowest (p = 0.01; 2.6 AU ha−1) in 2020. Crude protein and digestible energy were greatest (p < 0.05) for BG-N120 and BG-RP in some of the evaluation days in 2019 but similar across pastures in 2020. Crude protein digestibility was greatest (p < 0.05) for BG-RP in the late season. Intake was less (p = 0.03) for horses grazing BG-RP (3.2%BW) compared to BG-N0 (5.0%BW). Nonetheless, no differences (p > 0.05) were observed among pastures for body measurements. The results indicate that BG-RP pastures can improve forage nutritive value and maintain horse body condition while maintaining similar stocking rate to monoculture bahiagrass with high N fertilizer rates. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 283 KiB  
Article
Invasive Pigweed (Amaranthus spinosus) as a Potential Source of Plant Secondary Metabolites to Mitigate Enteric Methane Emissions in Beef Cattle
by Wilmer Cuervo, Mariana Larrauri, Camila Gomez-Lopez and Nicolas DiLorenzo
Grasses 2025, 4(2), 14; https://doi.org/10.3390/grasses4020014 - 10 Apr 2025
Viewed by 352
Abstract
Global beef demand will rise by 40 million tons in 30 years, increasing methane (CH4) emissions. Pigweed (Amaranthus spinosus), an invasive weed abundant in southeastern U.S. pastures, may mitigate CH4. Yet, its potential as a feed additive [...] Read more.
Global beef demand will rise by 40 million tons in 30 years, increasing methane (CH4) emissions. Pigweed (Amaranthus spinosus), an invasive weed abundant in southeastern U.S. pastures, may mitigate CH4. Yet, its potential as a feed additive remains unexplored. The aim of this study was to evaluate the influence of pigweed and its extracts on ruminal fermentation and CH4 production. For Exp 1, ruminal fluid from three American Aberdeen steers was incubated with 0, 2.5%, 5%, or 10% of diet dry matter (DM) of roots, stems, leaves, seeds, or the whole pigweed plant (WHO). In Exp 2, extracts from the leaves and WHO were incubated under the same conditions. For the first experiment, 2.5% of the roots, 5% of the leaves, and 10% of the WHO decreased acetate and butyrate concentrations (p < 0.01). In contrast, the WHO, leaves, and seeds at 2.5% of DM increased propionate concentration (p = 0.05). Increasing levels of WHO, leaves, and seeds quadratically reduced CH4 (p < 0.001). The addition of 2.5 and 5% of leaves and WHO reduced in vitro CH4 production per gr of organic matter fermented (p < 0.01). In Exp 2, based on their CH4 mitigation, the leaves and WHO were extracted, and their phenol (3.2 and 1.1 mg/g of DM, respectively) and flavonoid (19.7 and 1.9 mg/g of DM, respectively) contents were determined. Extracts from WHO (2.5%) decreased acetate and CH4 (p < 0.05), while 5% inclusion decreased gas production and increased ruminal pH (p < 0.03). Leaf extracts (2.5%) increased propionate and reduced acetate: propionate (p < 0.05). The leaves and WHO extracts did not affect IVOMD at either inclusion level (p > 0.4). Extracts at 5% from WHO were more effective than that from leaves in reducing CH4 (27% vs. 4%). The evidence suggests that the inclusion of 2.5 to 5% of WHO extracts shifts ruminal fermentation towards propionate-producing impairing methanogenesis, representing a sustainable strategy to mitigate CH4. This hypothesis must be further assessed under in vivo supplementation of the extracts to beef cattle. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
13 pages, 511 KiB  
Article
Pearl Millet Genotypes Irrigated with Brackish Water Under Different Levels of Agricultural Gypsum
by Gêisa Araújo de Oliveira, Ossival Lolato Ribeiro, Gherman Garcia Leal de Araújo, Fleming Sena Campos, José Nildo Tabosa, Amadeu Regitano Neto, Thieres George Freire da Silva, Daniele Rebouças de Santana Loures and Glayciane Costa Gois
Grasses 2025, 4(2), 13; https://doi.org/10.3390/grasses4020013 - 9 Apr 2025
Viewed by 200
Abstract
The aim was to evaluate the productivity, agronomic characteristics, and chemical and mineral composition of pearl millet genotypes irrigated with brackish water under the application of agricultural gypsum in two cuts. The experiment was a randomized block design in a 4 (gypsum levels—0, [...] Read more.
The aim was to evaluate the productivity, agronomic characteristics, and chemical and mineral composition of pearl millet genotypes irrigated with brackish water under the application of agricultural gypsum in two cuts. The experiment was a randomized block design in a 4 (gypsum levels—0, 2, 4, and 8 ton ha−1 applied on the surface) × 3 (pearl millet genotypes—ADR 300, BRS 1501, and IPA BULK 1BF) factorial arrangement, with three replications, irrigated with high brackish water and low sodium. Agricultural gypsum had no significant effect on productivity, agronomic characteristics, and chemical and mineral composition (p > 0.05). In the first cut, higher mean values were found for the percentage of panicle, crude protein, ether extract, in vitro dry matter digestibility, calcium, sulfur, and manganese (p < 0.05). For the second cut, higher results were observed for green matter productivity, dry matter productivity, water use efficiency, stem percentage, stem diameter, average leaf size, panicle size, acid detergent fiber, lignin, cellulose, total carbohydrates, potassium, and copper (p < 0.05). IPA Bulk 1 BF showed a larger panicle size in both cuts (p < 0.05). The evaluated pearl millet genotypes showed desirable agronomic characteristics and tolerance to irrigation with brackish water regardless of gypsum application, thus they are indicated for cultivation in the semi-arid regions. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop