Previous Issue
Volume 3, December
 
 

Grasses, Volume 4, Issue 1 (March 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 2634 KiB  
Article
Determining a Suitable Local Green Biorefinery Model for Adoption by Irish Livestock Farmers Using a Mixed-Method Co-Design Employing Economic and Geographical Information Systems Analysis
by Alice Hand, Emily Marsh, Carmen Giron Dominguez, Abhay Menon, Theresa Rubhara, Helena McMahon, Breda O’Dwyer, Paul Holloway and James Gaffey
Grasses 2025, 4(1), 7; https://doi.org/10.3390/grasses4010007 - 7 Feb 2025
Viewed by 613
Abstract
To support the ambitious bioeconomy vision outlined in Ireland’s Bioeconomy Action Plan, there is an urgent need to bring together the necessary stakeholders required to implement this vision. Farmers and other primary producers who oversee the production of sustainable biomass constitute one of [...] Read more.
To support the ambitious bioeconomy vision outlined in Ireland’s Bioeconomy Action Plan, there is an urgent need to bring together the necessary stakeholders required to implement this vision. Farmers and other primary producers who oversee the production of sustainable biomass constitute one of the most important categories of stakeholders in the bio-based value chain. To ensure scalable, long-lasting bioeconomy collaboration, it is essential that farmers are involved in developing this bioeconomy vision. The current study provides a mixed-methods approach to co-design a green biorefinery vision with Irish farmers and other key value-chain actors. The selected value chain targeting a medium-scale grass silage biorefinery focused on the production of eco-insulation materials, with protein and biogas co-products for local markets. This was then assessed economically using an economic model, which provided a payback period of five years. To identify suitable sites for deployment of the green biorefinery in rural areas, geographical information systems (GIS) analysis was undertaken, considering various environmental, socio-economic and infrastructural variables, which identified 26 potential sites for deployment of the green biorefinery model in Ireland. This study found that early engagement with and inclusion of the farmers in a co-designed process of innovation and alternative revenue streams for them is essential. While a preferred cooperative-based business model for a grass silage biorefinery was identified in consultation with the multiple stakeholders, further research on its long-term commercial sustainability is proposed as future research. Full article
Show Figures

Graphical abstract

14 pages, 3376 KiB  
Article
Irrigation Water Treated with Oxygen Nanobubbles Decreases Irrigation Volume While Maintaining Turfgrass Quality in Central Chile
by Jesús Daniela Calvo, Tomás Vicente Del Campo and Alejandra Antonieta Acuña
Grasses 2025, 4(1), 6; https://doi.org/10.3390/grasses4010006 - 6 Feb 2025
Viewed by 463
Abstract
The efficient use of water resources is a growing priority in multiple sectors, including the turfgrass industry. Nanobubbles (NB) represent an innovative technology that, by enriching solutions with various gases, offers significant benefits in several industrial areas. In crop irrigation, they have been [...] Read more.
The efficient use of water resources is a growing priority in multiple sectors, including the turfgrass industry. Nanobubbles (NB) represent an innovative technology that, by enriching solutions with various gases, offers significant benefits in several industrial areas. In crop irrigation, they have been shown to increase dissolved oxygen in the root zone and thereby boost yields. The objective of this study was to evaluate the impact of the use of oxygen NB in irrigation water on turfgrass quality, considering different levels of water restriction (0%, 30%, and 50% of daily crop evapotranspiration), compared to conventional irrigation. During the summer of 2024, trials were conducted using turf quality indices based on multispectral reflectance and RGB digital image analysis. The results showed that the use of NB allowed for a reduction in irrigation by 50% without compromising turf quality, reaching values similar to treatments without water restriction. In contrast, treatment with the same restriction but without NB (WNB50%) showed a deterioration in quality. This study shows NB as an innovative tool to optimize water use, with great potential for applications in landscape green areas, promote water use efficiency, and reduce the costs associated with irrigation. Full article
Show Figures

Graphical abstract

14 pages, 1751 KiB  
Article
Influence of Temperature and Precipitation on the Forage Quality of Bluebunch Wheatgrass and Idaho Fescue During the Dormant Season
by Noah G. Davis, Sam A. Wyffels and Timothy DelCurto
Grasses 2025, 4(1), 5; https://doi.org/10.3390/grasses4010005 - 3 Feb 2025
Viewed by 352
Abstract
Dormant forage is generally understood to be low-quality, but how and why it changes over the dormant season have not been well studied. Therefore, this study evaluated the changes in the forage quality of bluebunch wheatgrass (Pseudoroegneria spicata) and Idaho fescue [...] Read more.
Dormant forage is generally understood to be low-quality, but how and why it changes over the dormant season have not been well studied. Therefore, this study evaluated the changes in the forage quality of bluebunch wheatgrass (Pseudoroegneria spicata) and Idaho fescue (Festuca idahoensis) over the course of the dormant season and in response to concurrent environmental conditions. We collected forage samples every 14 days for two consecutive winters in southwestern Montana, USA. Samples were analyzed for crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF). A suite of environmental metrics was derived from PRISM weather data. Data were analyzed with a linear mixed model and the STATICO ordination method. Crude protein and ADF varied throughout the winter across both years, with CP ranging from 1.9–4.0% and ADF from 37–42%. The differences between species were more pronounced and more consistent in CP. The differences between years were more pronounced in ADF and NDF. Relative temperature explained the most variation in forage quality. Crude protein is positively correlated with short-term warmer temperatures, whereas NDF is positively correlated with longer-term warmer temperatures. This demonstrates that forage quality can change over the dormant season and is influenced by winter weather events. Full article
(This article belongs to the Special Issue Feature Papers in Grasses)
Show Figures

Figure 1

13 pages, 1591 KiB  
Article
Root Penetration Is Associated with Root Diameter and Root Growth Rate in Tropical Forage Grasses
by Chanthy Huot, Joshua N. M. Philp, Yi Zhou and Matthew D. Denton
Grasses 2025, 4(1), 4; https://doi.org/10.3390/grasses4010004 - 16 Jan 2025
Viewed by 735
Abstract
Soil compaction impedes root exploration by plants, which limits access to nutrients and water, ultimately compromising survival. The capability of roots to penetrate hard soils is therefore advantageous. While root penetration has been studied in various annual crops, the relationships between root growth [...] Read more.
Soil compaction impedes root exploration by plants, which limits access to nutrients and water, ultimately compromising survival. The capability of roots to penetrate hard soils is therefore advantageous. While root penetration has been studied in various annual crops, the relationships between root growth and root penetration are poorly understood in tropical perennial grasses. This study aimed to compare root penetration capability in 10 tropical perennial forage grasses and identify relationships between root penetration, root diameter and vertical root growth. Root penetration of each species, namely Urochloa (syn. Brachiaria) brizantha cv. Mekong Briz, U. decumbens cv. Basilisk, U. humidicola cv. Tully, U. hybrid cv. Mulato II, U. mosambicensis cv. Nixon, U. ruziziensis cv Kennedy, Panicum coloratum cv. Makarikariense, Megathyrsus maximus (syn. Panicum maximum) cv. Tanzânia, Paspalum scrobiculatum (syn. Paspalum coloratum) cv. BA96 10 and Setaria sphacelata cv Solendar, was evaluated using wax layers of varying resistances, created from a mixture of 40% (1.39 MPa) and 60% (2.12 MPa) paraffin wax, combined with petroleum jelly. Reference root sizes were determined for the grass species by measuring root diameter and root lengths of seedlings grown in growth pouches. Vertical root growth rate for each species was measured in grasses grown in 120 cm deep rhizotrons. Species with greater root penetration at both resistances had significantly higher shoot growth rates (r = 0.65 at 40% wax and 0.66 at 60% wax) and greater root diameters (r = 0.67 at 40% wax and 0.68 at 60% wax). Root penetration was significantly higher in species with greater vertical root growth rate only in the 60% wax treatment (r = 0.82). Root penetration at higher resistance was correlated with the root diameter and rapid vertical root growth of the species. This may indicate a contribution of these traits to root penetration ability. The combination of greater root diameter and root vertical growth rate, as observed in M. maximus, may assist in the identification of perennial forage grasses suitable for agroecosystems challenged by soil compaction and rapidly drying soil surface. Full article
Show Figures

Figure 1

9 pages, 255 KiB  
Communication
Urban Landscapes: Turfgrass Benefits
by Alex J. Lindsey, Marco Schiavon, J. Bryan Unruh and Kevin Kenworthy
Grasses 2025, 4(1), 3; https://doi.org/10.3390/grasses4010003 - 7 Jan 2025
Viewed by 500
Abstract
Recently, turfgrass has received scrutiny from the public in many parts of the United States due to the misconception that it has limited benefits and has negative impacts on the environment. These negative impacts are often associated with water and chemical usage during [...] Read more.
Recently, turfgrass has received scrutiny from the public in many parts of the United States due to the misconception that it has limited benefits and has negative impacts on the environment. These negative impacts are often associated with water and chemical usage during turfgrass maintenance. Even with these ill-advised concerns, turfgrass remains an important component of urban landscapes. Contrary to public opinion, turfgrass has numerous environmental, ecological, economical, social, and societal benefits. This review paper summarizes and highlights the benefits of turfgrass systems. Full article
(This article belongs to the Special Issue Advances in Sustainable Turfgrass Management)
26 pages, 5269 KiB  
Review
Consequences of Invasive Prosopis (Mesquite) on Vegetation, Soil Health, Biodiversity, and Compliance of Management Practices in South African Rangelands: A Review
by Siviwe Odwa Malongweni, Kaya Mrubata, Johan van Tol, Mohamed A. M. Abd Elbasit and Douglas M. Harebottle
Grasses 2025, 4(1), 2; https://doi.org/10.3390/grasses4010002 - 3 Jan 2025
Viewed by 765
Abstract
Prosopis glandulosa (Mesquite), an invasive alien tree species, poses major threats to soil health, native vegetation, and biodiversity in South African rangelands. The negative impacts of Prosopis on socio-economic, environmental, and ecological resources outweigh the benefits. Most South African researchers are afraid that [...] Read more.
Prosopis glandulosa (Mesquite), an invasive alien tree species, poses major threats to soil health, native vegetation, and biodiversity in South African rangelands. The negative impacts of Prosopis on socio-economic, environmental, and ecological resources outweigh the benefits. Most South African researchers are afraid that if left uncontrolled or poorly managed, it can cause severe land degradation, reduced agricultural productivity, indigenous-species shift, and ultimately the loss of biodiversity. Consequently, this will undermine key sustainable development goals related to food security and environmental conservation. In this review we conducted a systematic review, identifying 309 peer-reviewed articles from Google Scholar and Web of Science, screening and analyzing 98 of these, and ultimately reviewing 34 publications in detail. Three key research gaps were identified: (1) insufficient research focused on Prosopis invasion in South Africa; (2) limited integration and collaboration between the agricultural sector, environmental conservation sector, and governmental bodies; and (3) challenges in policy implementation within invaded areas. The study seeks to address these gaps by highlighting the impact of this alien invasive Prosopis species on land, biodiversity, and overall ecosystem stability. It also investigates policy issues surrounding invasive species and their control. Effective management of Prosopis within the country will not only control the spread but also support the broader objectives of environmental conservation, agricultural sustainability, and socio-economic development. Full article
Show Figures

Figure 1

21 pages, 2062 KiB  
Article
Nutritional and Structural Components of Forage Sorghum Subjected to Nitrogen Fertilization and Molybdenum
by Glícia Rafaela Freitas da Fonsêca, Jamiles Carvalho Gonçalves de Souza Henrique, Ednaete Bezerra de Alcântara, Náthaly Vitória Santos Almeida, Alexandre Campelo de Oliveira, Maria Luana da Silva Medeiros, Arthur Lucas Júlio Silva and Evaristo Jorge Oliveira de Souza
Grasses 2025, 4(1), 1; https://doi.org/10.3390/grasses4010001 - 2 Jan 2025
Viewed by 548
Abstract
Semi-arid regions present edaphoclimatic limitations for forage production, primarily affecting plant growth and development. Crops adapted to such conditions, like forage sorghum, and nutritional supplementation with nitrogen and molybdenum, can increase forage production. The objective of this study was to evaluate the interaction [...] Read more.
Semi-arid regions present edaphoclimatic limitations for forage production, primarily affecting plant growth and development. Crops adapted to such conditions, like forage sorghum, and nutritional supplementation with nitrogen and molybdenum, can increase forage production. The objective of this study was to evaluate the interaction between nitrogen and molybdenum on the bromatological and structural components of forage sorghum (SF-15) cultivated in a semi-arid environment, with the hypothesis that nitrogen fertilization combined with molybdenum would enhance nitrogen use efficiency in sorghum. The methodology involved a 5 × 2 factorial experiment in a randomized block design (RBD) with increasing doses of nitrogen (urea) (0, 50, 100, 150, 300 kg ha¹) and two doses of molybdenum (sodium molybdate): 0 and 160 g ha−1, conducted over three cultivation cycles. At the end of each cycle, morphological variables were evaluated, and yield of natural mass (YNM), yield of dry mass (YDM), crude protein production (CPP), and bromatological components were determined. Morphometric characteristics were influenced by the interaction between cycle x nitrogen doses (N) and molybdenum doses (Mo). For productive characteristics, there was an interaction between cycle and nitrogen doses, with the first regrowth cycle and the dosage of 100 kg ha−1 N showing the highest mean. Bromatological components were influenced by the N and Mo interaction. The study confirmed the synergistic effect between nitrogen and molybdenum. It is recommended to use 100 kg ha−1 nitrogen fertilization for an average production of 10 t ha−1 for SF-15 sorghum. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop