Differential Effects of O-Benzyl-Serine on Sulfur Metabolism, Photosynthesis, and Growth in Two Species of Weeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics Simulations
2.2. Plant Cultivation and Determination of Biometric Parameters
2.3. Enzyme Activities of Sulfur Assimilation Pathway
2.4. Gas Exchange and Chlorophyll a Fluorescence Analysis
2.5. Determination of the Nutrient Content
2.6. Statistical Analysis
3. Results
3.1. Molecular Dynamics Simulations
3.2. Effects of OBS on the Growth of Ipomoea grandifolia and Euphorbia heterophylla
3.3. Effects of the OBS on the Activities of OAS-TL of I. grandifolia and E. heterophylla Plants
3.4. Effects of OBS on Nutrient Content in the Roots and Leaves of I. grandifolia and E. heterophylla
3.5. Effects of OBS on Photosynthetic Performance of I. grandifolia and E. heterophylla
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABS/RC | Absorbed energy flux per active reaction center |
| ADH | Aldehyde dehydrogenase |
| ATP | Adenosine triphosphate |
| CAT | Catalase |
| Chl a | Chlorophyll a |
| Cys | L-Cysteine |
| DAO | Diamine oxidase |
| DI0/RC | Dissipated energy flux per reaction center |
| ETR | Electron transport rate |
| ET0/RC | Electron transport flux per reaction center |
| Fo | Minimal fluorescence yield of dark-adapted state |
| Fm | Maximal fluorescence yield of dark-adapted state |
| Fv/Fm | Maximum quantum efficiency of PSII photochemistry |
| GSH | Glutathione (reduced form) |
| HMT | Histamine N-methyltransferase |
| H2O2 | Hydrogen peroxide |
| JIP | Fast chlorophyll a fluorescence transient (OJIP curve) |
| MD | Molecular dynamics |
| OBS | O-Benzyl-serine |
| OAS | O-Acetylserine |
| OAS-TL | O-Acetylserine(thiol)-lyase |
| OJIP | Chlorophyll a fluorescence induction curve (O–J–I–P phases) |
| PEPC | Phosphoenolpyruvate carboxylase |
| PSII | Photosystem II |
| RC | Reaction center |
| RE0/RC | Electron flux reducing end acceptors at PSI per reaction center |
| ROS | Reactive oxygen species |
| RuBisCO | Ribulose-1,5-bisphosphate carboxylase/oxygenase |
| SOD | Superoxide dismutase |
| TR0/RC | Trapped energy flux per reaction center |
References
- Grusak, M.A. Plant Macro- and Micronutrient Minerals. In Encyclopedia of Life Sciences; Wiley-Blackwell: Hoboken, NJ, USA, 2001; pp. 1–5. [Google Scholar] [CrossRef]
- Rengel, Z.; Cakmak, I.; White, P.J. Marschner’s Mineral Nutrition of Plants; Academic Press: Cambridge, MA, USA, 2022; ISBN 0323853528. [Google Scholar]
- Samota, M.K.; Navnage, N.P.; Bhatt, L. Role of Macro and Micronutrient in Development and Growth of Plant. Trends Biosci. 2017, 10, 3171–3173. [Google Scholar]
- Uchida, R. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. Plant Nutr. Manag. Hawaii’s Soils 2000, 4, 31–55. [Google Scholar]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur Nutrition and Its Role in Plant Growth and Development. Plant Signal. Behav. 2023, 18, 2030082. [Google Scholar] [CrossRef]
- Shah, S.H.; Islam, S.; Mohammad, F. Sulphur as a Dynamic Mineral Element for Plants: A Review. J. Soil Sci. Plant Nutr. 2022, 22, 2118–2143. [Google Scholar] [CrossRef]
- Kopriva, S.; Mugford, S.G.; Baraniecka, P.; Lee, B.; Matthewman, C.A.; Koprivova, A. Control of Sulfur Partitioning between Primary and Secondary Metabolism in Arabidopsis. Front. Plant Sci. 2012, 3, 30360. [Google Scholar] [CrossRef] [PubMed]
- Kopriva, S.; Malagoli, M.; Takahashi, H. Sulfur Nutrition: Impacts on Plant Development, Metabolism, and Stress Responses. J. Exp. Bot. 2019, 70, 4069–4073. [Google Scholar] [CrossRef] [PubMed]
- Koprivova, A.; Kopriva, S. Molecular Mechanisms of Regulation of Sulfate Assimilation: First Steps on a Long Road. Front. Plant Sci. 2014, 5, 589. [Google Scholar] [CrossRef] [PubMed]
- Hirase, K.; Molin, W.T. Sulfur Assimilation in Plants and Weed Control: Potential Targets for Novel Herbicides and Action Sites of Certain Safeners. Weed Biol. Manag. 2003, 3, 147–157. [Google Scholar] [CrossRef]
- Tafoya-Razo, J.A.; Oregel-Zamudio, E.; Velázquez-Márquez, S.; Torres-García, J.R. 10,000-Times Diluted Doses of ACCase-Inhibiting Herbicides Can Permanently Change the Metabolomic Fingerprint of Susceptible Avena fatua L. Plants. Plants 2019, 8, 368. [Google Scholar] [CrossRef]
- Qu, R.Y.; He, B.; Yang, J.F.; Lin, H.Y.; Yang, W.C.; Wu, Q.Y.; Li, Q.X.; Yang, G.F. Where Are the New Herbicides? Pest Manag. Sci. 2021, 77, 2620–2625. [Google Scholar] [CrossRef]
- Ofosu, R.; Agyemang, E.D.; Márton, A.; Pásztor, G.; Taller, J.; Kazinczi, G. Herbicide Resistance: Managing Weeds in a Changing World. Agronomy 2023, 13, 1595. [Google Scholar] [CrossRef]
- Perotti, V.E.; Larran, A.S.; Palmieri, V.E.; Martinatto, A.K.; Permingeat, H.R. Herbicide Resistant Weeds: A Call to Integrate Conventional Agricultural Practices, Molecular Biology Knowledge and New Technologies. Plant Sci. 2020, 290, 110255. [Google Scholar] [CrossRef] [PubMed]
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Swanton, C.; Zollinger, R. Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef]
- Capaldi, F.R.; Gratão, P.L.; Reis, A.R.; Lima, L.W.; Azevedo, R.A. Sulfur Metabolism and Stress Defense Responses in Plants. Trop. Plant Biol. 2015, 8, 60–73. [Google Scholar] [CrossRef]
- Gigolashvili, T.; Kopriva, S. Transporters in Plant Sulfur Metabolism. Front. Plant Sci. 2014, 5, 442. [Google Scholar] [CrossRef]
- Hell, R.; Wirtz, M. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana. Arab. B 2011, 9, e0154. [Google Scholar] [CrossRef]
- Jobe, T.O.; Zenzen, I.; Rahimzadeh Karvansara, P.; Kopriva, S. Integration of Sulfate Assimilation with Carbon and Nitrogen Metabolism in Transition from C3 to C4 Photosynthesis. J. Exp. Bot. 2019, 70, 4211–4221. [Google Scholar] [CrossRef]
- Long, S.R.; Kahn, M.; Seefeldt, L.; Tsay, Y.-F.; Kopriva, S. Nitrogen and Sulfur. In Biochemistry and Molecular Biology of Plants; Buchanan, B., Gruissem, W., Jones, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 711–768. ISBN 9780470714218. [Google Scholar]
- Foletto-Felipe, M.d.P.; Abrahão, J.; Siqueira-Soares, R.d.C.; Contesoto, I.d.C.; Grizza, L.H.E.; de Almeida, G.H.G.; Constantin, R.P.; Philippsen, G.S.; Seixas, F.A.V.; Bueno, P.S.A.; et al. Inhibition of O-Acetylserine (Thiol) Lyase as a Promising New Mechanism of Action for Herbicides. Plant Physiol. Biochem. 2023, 204, 108127. [Google Scholar] [CrossRef]
- Foletto-Felipe, M.d.P.; Abrahão, J.; Contesoto, I.d.C.; Ferro, A.P.; Grizza, L.H.E.; Menezes, P.V.M.d.C.; Wagner, A.L.S.; Seixas, F.A.V.; de Oliveira, M.A.S.; Tomazini, L.F.; et al. Inhibition of Sulfur Assimilation by S-Benzyl-L-Cysteine: Impacts on Growth, Photosynthesis, and Leaf Proteome of Maize Plants. Plant Physiol. Biochem. 2024, 216, 109173. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar]
- Huang, B.; Vetting, M.W.; Roderick, S.L. The Active Site of O-Acetylserine Sulfhydrylase Is the Anchor Point for Bienzyme Complex Formation with Serine Acetyltransferase. J. Bacteriol. 2005, 187, 3201–3205. [Google Scholar] [PubMed]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef] [PubMed]
- Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A Fast Force Field Generation Tool for Small Organic Molecules. J. Comput. Chem. 2011, 32, 2359–2368. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Calif. Agr. Expt. Sta. Circ. 1950, 347, 1–32. [Google Scholar]
- Randewig, D.; Hamisch, D.; Herschbach, C.; Eiblmeier, M.; Gehl, C.; Jurgeleit, J.; Skerra, J.; Mendel, R.R.; Rennenberg, H.; Hänsch, R. Sulfite Oxidase Controls Sulfur Metabolism under SO2 Exposure in Arabidopsis thaliana. Plant Cell Environ. 2012, 35, 100–115. [Google Scholar] [CrossRef]
- Machado, E.C.; Schmidt, P.T.; Medina, C.L.; Ribeiro, E.R.V. Photosynthetic Responses of Three Citrus Species to Environmental Factors. Pesqui. Agropecu. Bras. 2005, 40, 1161–1170. [Google Scholar] [CrossRef]
- Moriwaki, T.; Falcioni, R.; Tanaka, F.A.O.; Cardoso, K.A.K.; Souza, L.A.; Benedito, E.; Nanni, M.R.; Bonato, C.M.; Antunes, W.C. Nitrogen-Improved Photosynthesis Quantum Yield Is Driven by Increased Thylakoid Density, Enhancing Green Light Absorption. Plant Sci. 2019, 278, 1–11. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochim. Biophys. Acta-Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Marchiosi, R.; de Souza Bido, G.; Böhm, P.A.F.; Soares, A.R.; da Silva, H.A.; Ferro, A.P.; de Lourdes Lucio Ferrarese, M.; Ferrarese-Filho, O. Photosynthetic Response of Soybean to L-DOPA and Aqueous Extracts of Velvet Bean. Plant Growth Regul. 2016, 80, 171–182. [Google Scholar] [CrossRef]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação Do Estado Nutricional Das Plantas: Princípios e Aplicações; Potafos: Piracicaba, Brazil, 1997; p. 319. [Google Scholar]
- Dayan, F.E.; Duke, S.O. Discovery for New Herbicide Sites of Action by Quantification of Plant Primary Metabolite and Enzyme Pools. Engineering 2020, 6, 509–514. [Google Scholar] [CrossRef]
- Künstler, A.; Gullner, G.; Ádám, A.L.; Kolozsváriné Nagy, J.; Király, L. The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense—A Road to Disease Resistance. Plants 2020, 9, 1705. [Google Scholar]
- Romero, L.C.; Aroca, M.Á.; Laureano-Marín, A.M.; Moreno, I.; García, I.; Gotor, C. Cysteine and Cysteine-Related Signaling Pathways in Arabidopsis Thaliana. Mol. Plant 2014, 7, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Martarello, D.C.I.; Grizza, L.H.E.; Foletto-Felipe, M.d.P.; Mendonça, A.P.d.S.; Constantin, R.P.; Ferro, A.P.; dos Santos, W.D.; Constantin, R.P.; Marchiosi, R.; Ferrarese-Filho, O. S-Benzyl-L-Cysteine Inhibits Growth and Photosynthesis, and Triggers Oxidative Stress in Ipomoea grandifolia. Agronomy 2024, 14, 1633. [Google Scholar] [CrossRef]
- Lange, A.; Cavalli, E.; Pereira, C.S.; Chapla, M.V.; Da Silva Freddi, O. Calcium:Magnesium Ratio and Chemical Characteristics of Soil under Crop of Soy and Corn. Nativa 2021, 9, 294–301. [Google Scholar] [CrossRef]
- Li, T.; Yan, A.; Bhatia, N.; Altinok, A.; Afik, E.; Durand-Smet, P.; Tarr, P.T.; Schroeder, J.I.; Heisler, M.G.; Meyerowitz, E.M. Calcium Signals Are Necessary to Establish Auxin Transporter Polarity in a Plant Stem Cell Niche. Nat. Commun. 2019, 10, 726. [Google Scholar] [CrossRef]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of Magnesium Deficiency on Photosynthesis and Carbohydrate Partitioning. Acta Physiol. Plant. 2016, 38, 145. [Google Scholar] [CrossRef]
- Tian, X.Y.; He, D.D.; Bai, S.; Zeng, W.Z.; Wang, Z.; Wang, M.; Wu, L.Q.; Chen, Z.C. Physiological and Molecular Advances in Magnesium Nutrition of Plants. Plant Soil 2021, 468, 1–17. [Google Scholar] [CrossRef]
- Lapaz, A.d.M.; Yoshida, C.H.P.; Gorni, P.H.; de Freitas-Silva, L.; Araújo, T.d.O.; Ribeiro, C. Iron Toxicity: Effects on the Plants and Detoxification Strategies. Acta Bot. Bras. 2022, 36, e2021abb0131. [Google Scholar] [CrossRef]
- Wairich, A.; De Conti, L.; Lamb, T.I.; Keil, R.; Neves, L.O.; Brunetto, G.; Sperotto, R.A.; Ricachenevsky, F.K. Throwing Copper Around: How Plants Control Uptake, Distribution, and Accumulation of Copper. Agronomy 2022, 12, 994. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc Toxicity in Plants: A Review. Planta 2021, 253, 129. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 517877. [Google Scholar] [CrossRef]
- Prusty, S.; Sahoo, R.K.; Nayak, S.; Poosapati, S.; Swain, D.M. Proteomic and Genomic Studies of Micronutrient Deficiency and Toxicity in Plants. Plants 2022, 11, 2424. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, Y. Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones. Front. Plant Sci. 2016, 7, 183. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, RS, Brazil, 2017; ISBN 9788582713679. [Google Scholar]
- Su, Y.H.; Liu, Y.B.; Zhang, X.S. Auxin-Cytokinin Interaction Regulates Meristem Development. Mol. Plant 2011, 4, 616–625. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry & Molecular Biology of Plants; Wiley: Hoboken, NJ, USA, 2015; ISBN 9780470714218. [Google Scholar]













| Residue | OAS Chain A | OAS Chain B | OBS Chain A | OBS Chain B |
|---|---|---|---|---|
| IT1-46 | 1.00 | 0.91 | 0.93 | 0.99 |
| ILE-49 | 0.01 | 0.00 | - | - |
| PRO-73 | - | 0.02 | 0.54 | 0.16 |
| THR-74 | 0.01 | 0.10 | 0.68 | 0.70 |
| SER-75 | 0.30 | 0.22 | 0.00 | 0.38 |
| GLY-76 | 0.39 | 0.27 | 0.67 | 0.97 |
| ASN-77 | 0.62 | 0.12 | 0.98 | 1.00 |
| THR-78 | 0.89 | 0.26 | 0.99 | 0.98 |
| MET-101 | - | 0.02 | 0.01 | 0.18 |
| MET-125 | 0.01 | 0.02 | 0.69 | 0.72 |
| GLN-147 | 0.18 | 0.10 | 0.92 | 0.11 |
| PHE-148 | 0.39 | 0.06 | 0.77 | 0.54 |
| GLY-181 | 0.58 | 0.66 | 0.78 | 0.33 |
| THR-182 | 0.84 | 0.74 | 0.44 | 0.62 |
| GLN-224 | 0.00 | 0.03 | 0.00 | 0.07 |
| GLY-225 | 0.54 | 0.44 | 0.58 | 0.16 |
| ILE-226 | 0.20 | 0.08 | 0.02 | 0.00 |
| GLY-227 | 0.39 | 0.56 | 0.37 | 0.07 |
| ALA-228 | 0.27 | 0.34 | 0.59 | 0.39 |
| PHE-230 | 0.01 | 0.06 | 0.07 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
de Carvalho Contesoto, I.; Boromelo, A.P.; da Silva Mendonça, A.P.; Corbetta, C.M.; Comar, A.C.; de Oliveira, M.A.S.; Tomazini, L.F.; de Almeida Junior, J.H.V.; Batista, M.A.; Bueno, P.S.A.; et al. Differential Effects of O-Benzyl-Serine on Sulfur Metabolism, Photosynthesis, and Growth in Two Species of Weeds. Agrochemicals 2026, 5, 3. https://doi.org/10.3390/agrochemicals5010003
de Carvalho Contesoto I, Boromelo AP, da Silva Mendonça AP, Corbetta CM, Comar AC, de Oliveira MAS, Tomazini LF, de Almeida Junior JHV, Batista MA, Bueno PSA, et al. Differential Effects of O-Benzyl-Serine on Sulfur Metabolism, Photosynthesis, and Growth in Two Species of Weeds. Agrochemicals. 2026; 5(1):3. https://doi.org/10.3390/agrochemicals5010003
Chicago/Turabian Stylede Carvalho Contesoto, Isabela, Ana Paula Boromelo, Ana Paula da Silva Mendonça, Cinthia Martins Corbetta, Amanda Castro Comar, Marco Aurélio Schüler de Oliveira, Larissa Fonseca Tomazini, João Henrique Vieira de Almeida Junior, Marcelo Augusto Batista, Paulo Sérgio Alves Bueno, and et al. 2026. "Differential Effects of O-Benzyl-Serine on Sulfur Metabolism, Photosynthesis, and Growth in Two Species of Weeds" Agrochemicals 5, no. 1: 3. https://doi.org/10.3390/agrochemicals5010003
APA Stylede Carvalho Contesoto, I., Boromelo, A. P., da Silva Mendonça, A. P., Corbetta, C. M., Comar, A. C., de Oliveira, M. A. S., Tomazini, L. F., de Almeida Junior, J. H. V., Batista, M. A., Bueno, P. S. A., Barbeiro, C., Ferro, A. P., dos Santos, W. D., Constantin, R. P., Ferrarese-Filho, O., & Marchiosi, R. (2026). Differential Effects of O-Benzyl-Serine on Sulfur Metabolism, Photosynthesis, and Growth in Two Species of Weeds. Agrochemicals, 5(1), 3. https://doi.org/10.3390/agrochemicals5010003

