Risk Factors for Cognitive Impairment in Multiple Sclerosis Patients
Abstract
:1. Introduction
2. Epidemiological Data Explaining the Burden of Cognitive Impairment in MS Patients
3. Major Risk Factors for Cognitive Impairment in MS Patients
3.1. Non-Modifiable Risk Factors
3.2. Clinical Risk Factors
3.3. Lifestyle Risk Factors
4. The Impact of Medication and Cognitive Rehabilitation on Cognitive Impairment in MS Patients
5. Conclusions and Future Research Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CIS | clinically isolated syndrome |
CNS | central nervous system |
DMT | disease-modifying therapy |
MS | multiple sclerosis |
NEDA | no evidence of disease activity |
RIS | radiologically isolated syndromes |
RRMS | relapsing-remitting multiple sclerosis |
SDMT | Symbol Digit Modalities Test |
References
- Wang, M.; Liu, C.; Zou, M.; Niu, Z.; Zhu, J.; Jin, T. Recent Progress in Epidemiology, Clinical Features, and Therapy of Multiple Sclerosis in China. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231193816. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Y.; Guan, Z.; Guo, P.; Zheng, K.; Du, Y.; Yin, S.; Chen, B.; Wang, H.; Jiang, J.; et al. Global, Regional, and National Burden of Multiple Sclerosis from 1990 to 2019: Findings of Global Burden of Disease Study 2019. Front. Public Health 2023, 11, 1073278. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.; Ng, H.S.; Poyser, C.; Lucas, R.M.; Tremlett, H. Multiple Sclerosis Incidence: A Systematic Review of Change over Time by Geographical Region. Mult. Scler. Relat. Disord. 2022, 63, 103932. [Google Scholar] [CrossRef] [PubMed]
- Faraclas, E. Interventions to Improve Quality of Life in Multiple Sclerosis: New Opportunities and Key Talking Points. Degener. Neurol. Neuromuscul. Dis. 2023, 13, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, M.A.; Bezzini, D.; Cecchini, I.; Cordioli, C.; Fiorentino, F.; Manacorda, T.; Nica, M.; Ponzio, M.; Ritrovato, D.; Vassallo, C.; et al. Patients with Multiple Sclerosis: A Burden and Cost of Illness Study. J. Neurol. 2022, 269, 5127–5135. [Google Scholar] [CrossRef] [PubMed]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS-CMSC-NAIMS Consensus Recommendations on the Use of MRI in Patients with Multiple Sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef]
- Ford, H. Clinical presentation and diagnosis of multiple sclerosis. Clin. Med. 2020, 20, 380–383. [Google Scholar] [CrossRef]
- Heitmann, H.; Andlauer, T.F.M.; Korn, T.; Mühlau, M.; Henningsen, P.; Hemmer, B.; Ploner, M. Fatigue, Depression, and Pain in Multiple Sclerosis: How Neuroinflammation Translates into Dysfunctional Reward Processing and Anhedonic Symptoms. Mult. Scler. 2022, 28, 1020–1027. [Google Scholar] [CrossRef]
- Maiese, K. Cognitive Impairment in Multiple Sclerosis. Bioengineering 2023, 10, 871. [Google Scholar] [CrossRef]
- Piacentini, C.; Argento, O.; Nocentini, U. Cognitive impairment in multiple sclerosis: “classic” knowledge and recent acquisitions. Deficiência cognitiva na esclerose múltipla: Conhecimentos “clássicos” e aquisições recentes. Arq. Neuropsiquiatr. 2023, 81, 585–596. [Google Scholar]
- Amato, M.P.; Prestipino, E.; Bellinvia, A.; Niccolai, C.; Razzolini, L.; Pastò, L.; Fratangelo, R.; Tudisco, L.; Fonderico, M.; Mattiolo, P.L.; et al. Cognitive impairment in multiple sclerosis: An exploratory analysis of environmental and lifestyle risk factors. PLoS ONE 2019, 14, e0222929. [Google Scholar] [CrossRef]
- Ozakbas, S.; Turkoglu, R.; Tamam, Y.; Terzi, M.; Taskapilioglu, O.; Yucesan, C.; Baser, H.L.; Gencer, M.; Akil, E.; Sen, S.; et al. Prevalence of and risk factors for cognitive impairment in patients with relapsing-remitting multiple sclerosis: Multi-center, controlled trial. Mult. Scler. Relat. Disord. 2018, 22, 70–76. [Google Scholar] [CrossRef]
- Oset, M.; Stasiolek, M.; Matysiak, M. Cognitive Dysfunction in the Early Stages of Multiple Sclerosis-How Much and How Important? Curr. Neurol. Neurosci. Rep. 2020, 20, 22. [Google Scholar] [CrossRef]
- Feuillet, L.; Reuter, F.; Audoin, B.; Malikova, I.; Barrau, K.; Cherif, A.A.; Pelletier, J. Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult. Scler. 2007, 13, 124–127. [Google Scholar] [CrossRef]
- Uher, T.; Blahova-Dusankova, J.; Horakova, D.; Bergsland, N.; Tyblova, M.; Benedict, R.H.; Kalincik, T.; Ramasamy, D.P.; Seidl, Z.; Hagermeier, J.; et al. Longitudinal MRI and neuropsychological assessment of patients with clinically isolated syndrome. J. Neurol. 2014, 261, 1735–1744. [Google Scholar] [CrossRef]
- Brochet, B.; Ruet, A. Cognitive Impairment in Multiple Sclerosis with Regards to Disease Duration and Clinical Phenotypes. Front. Neurol. 2019, 10, 261. [Google Scholar] [CrossRef]
- Giorelli, M. Current and Future Perspectives of an Early Diagnosis of Cognitive Impairment. Front. Neurol. 2023, 14, 1171681. [Google Scholar] [CrossRef]
- Portaccio, E.; Amato, M.P. Cognitive Impairment in Multiple Sclerosis: An Update on Assessment and Management. NeuroSci 2022, 3, 667–676. [Google Scholar] [CrossRef]
- DeLuca, J.; Chiaravalloti, N.D.; Sandroff, B.M. Treatment and Management of Cognitive Dysfunction in Patients with Multiple Sclerosis. Nat. Rev. Neurol. 2020, 16, 319–332. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive Impairment in Multiple Sclerosis: Clinical Management, MRI, and Therapeutic Avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef]
- Anhoque, C.F.; Biccas Neto, L.; Domingues, S.C.A.; Teixeira, A.L.; Domingues, R.B. Cognitive impairment in patients with clinically isolated syndrome. Dement. Neuropsychol. 2012, 6, 266–269. [Google Scholar] [CrossRef]
- Kolčava, J.; Kočica, J.; Hulová, M.; Dušek, L.; Horáková, M.; Keřkovský, M.; Stulík, J.; Dostál, M.; Kuhn, M.; Vlčková, E.; et al. Conversion of Clinically Isolated Syndrome to Multiple Sclerosis: A Prospective Study. Mult. Scler. Relat. Disord. 2020, 44, 102262. [Google Scholar] [CrossRef]
- Amato, M.P.; Portaccio, E.; Goretti, B.; Zipoli, V.; Iudice, A.; Della Pina, D.; Malentacchi, G.; Sabatini, S.; Annunziata, P.; Falcini, M.; et al. Relevance of Cognitive Deterioration in Early Relapsing-Remitting MS: A 3-Year Follow-Up Study. Mult. Scler. 2010, 16, 1474–1482. [Google Scholar] [CrossRef]
- Domingo-Santos, Á.; Labiano-Fontcuberta, A.; Aladro-Benito, Y.; Martínez-Ginés, M.L.; Ayuso-Peralta, L.; Puertas-Martín, V.; Cerezo-García, M.; Higueras-Hernández, Y.; Mato-Abad, V.; Álvarez-Linera, J.; et al. Predicting Conversion to Multiple Sclerosis by Assessing Cognitive Impairment in Radiologically Isolated Syndrome. Mult. Scler. Relat. Disord. 2021, 49, 102749. [Google Scholar] [CrossRef]
- Kavaliunas, A.; Tinghög, P.; Friberg, E.; Olsson, T.; Alexanderson, K.; Hillert, J.; Karrenbauer, V.D. Cognitive Function Predicts Work Disability Among Multiple Sclerosis Patients. Mult. Scler. J. Exp. Transl. Clin. 2019, 5, 2055217318822134. [Google Scholar] [CrossRef]
- Cavaco, S.; Ferreira, I.; Moreira, I.; Santos, E.; Samões, R.; Sousa, A.P.; Pinheiro, J.; Teixeira-Pinto, A.; da Silva, A.M. Cognitive Dysfunction and Mortality in Multiple Sclerosis: Long-Term Retrospective Review. Mult. Scler. 2022, 28, 1382–1391. [Google Scholar] [CrossRef]
- Macías Islas, M.Á.; Ciampi, E. Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview. Biomedicines 2019, 7, 22. [Google Scholar] [CrossRef]
- De Meo, E.; Portaccio, E.; Giorgio, A.; Ruano, L.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.G.; Gallo, P.; Grossi, P.; et al. Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurol. 2021, 78, 414–425. [Google Scholar] [CrossRef]
- Strober, L.; DeLuca, J.; Benedict, R.H.; Jacobs, A.; Cohen, J.A.; Chiaravalloti, N.; Hudson, L.D.; Rudick, R.A.; LaRocca, N.G. Multiple Sclerosis Outcome Assessments Consortium (MSOAC). Symbol Digit Modalities Test: A valid clinical trial endpoint for measuring cognition in multiple sclerosis. Mult. Scler. 2019, 25, 1781–1790. [Google Scholar] [CrossRef]
- Tremblay, A.; Charest, K.; Brando, E.; Roger, E.; Duquette, P.; Rouleau, I. The Effects of Aging and Disease Duration on Cognition in Multiple Sclerosis. Brain Cogn. 2020, 146, 105650. [Google Scholar] [CrossRef]
- Javadi, A.H.S.; Shafikhani, A.A.; Beizapour, N. Evaluation of the Determinants of Cognitive Dysfunction in Patients with Multiple Sclerosis. Middle East. Curr. Psychiatry 2022, 29, 97. [Google Scholar] [CrossRef]
- Baird, J.F.; Cederberg, K.L.J.; Sikes, E.M.; Jeng, B.; Sasaki, J.E.; Sandroff, B.M.; Motl, R.W. Changes in Cognitive Performance with Age in Adults with Multiple Sclerosis. Cogn. Behav. Neurol. 2019, 32, 201–207. [Google Scholar] [CrossRef]
- Hassanshahi, E.; Asadollahi, Z.; Azin, H.; Hassanshahi, J.; Hassanshahi, A.; Azin, M. Cognitive Function in Multiple Sclerosis Patients Based on Age, Gender, and Education Level. Acta Med. Iran. 2020, 58, 500–507. [Google Scholar] [CrossRef]
- Maffezzini, S.; Pucci, V.; Riccardi, A.; Montemurro, S.; Puthenparampil, M.; Perini, P.; Rinaldi, F.; Gallo, P.; Arcara, G.; Mondini, S. Clinical Profiles in Multiple Sclerosis: Cognitive Reserve and Motor Impairment along Disease Duration. Behav. Sci. 2023, 13, 708. [Google Scholar] [CrossRef]
- Alexandra, T.; Kim, C.; Estefania, B.; Elaine, R.; Pierre, D.; Isabelle, R. Cognitive Reserve as a Moderating Factor between EDSS and Cognition in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 70, 104482. [Google Scholar]
- Grant, J.G.; Rapport, L.J.; Darling, R.; Waldron-Perrine, B.; Lumley, M.A.; Whitfield, K.E.; Bernitsas, E. Cognitive Enrichment and Education Quality Moderate Cognitive Dysfunction in Black and White Adults with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 78, 104916. [Google Scholar] [CrossRef]
- Whitehouse, C.E.; Fisk, J.D.; Bernstein, C.N.; Berrigan, L.I.; Bolton, J.M.; Graff, L.A.; Hitchon, C.A.; Marriott, J.J.; Peschken, C.A.; Sareen, J.; et al. Comorbid Anxiety, Depression, and Cognition in MS and Other Immune-Mediated Disorders. Neurology 2019, 92, e406–e417. [Google Scholar] [CrossRef]
- van Ballegooijen, H.; van der Hiele, K.; Enzinger, C.; de Voer, G.; Visser, L.H.; CONFIDENCE Study Group. The Longitudinal Relationship between Fatigue, Depression, Anxiety, Disability, and Adherence with Cognitive Status in Patients with Early Multiple Sclerosis Treated with Interferon Beta-1a. eNeurologicalSci 2022, 28, 100409. [Google Scholar] [CrossRef]
- Elshebawy, H.; Fahmy, E.M.; Elfayoumy, N.M.; Abdelalim, A.M.; Ismail, R.S. Clinical Predictors to Cognitive Impairment in Multiple Sclerosis Patients. Egypt J. Neurol. Psychiatry Neurosurg. 2021, 57, 38. [Google Scholar] [CrossRef]
- Al-Falaki, T.A.; Hamdan, F.B.; Sheaheed, N.M. Assessment of Cognitive Functions in Patients with Multiple Sclerosis. Egypt J. Neurol. Psychiatry Neurosurg. 2021, 57, 127. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.; Marrie, R.A. Diet Quality Is Associated with Disability and Symptom Severity in Multiple Sclerosis. Neurology 2018, 90, e1–e11. [Google Scholar] [CrossRef]
- Martín-Hersog, F.A.; Muñoz-Jurado, A.; Escribano, B.M.; Luque, E.; Galván, A.; LaTorre, M.; Giraldo, A.I.; Caballero-Villarraso, J.; Agüera, E.; Santamaría, A.; et al. Sodium Chloride-Induced Changes in Oxidative Stress, Inflammation, and Dysbiosis in Experimental Multiple Sclerosis. Nutr. Neurosci. 2022, 27, 74–86. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Bhargava, P.; Smith, M.D.; Vizthum, D.; Henry-Barron, B.; Kornberg, M.D.; Cassard, S.D.; Kapogiannis, D.; Sullivan, P.; Baer, D.J.; et al. Intermittent Calorie Restriction Alters T Cell Subsets and Metabolic Markers in People with Multiple Sclerosis. EBioMedicine 2022, 82, 104124. [Google Scholar] [CrossRef]
- Ghadiri, F.; Ebadi, Z.; Asadollahzadeh, E.; Naser Moghadasi, A. Gut Microbiome in Multiple Sclerosis-Related Cognitive Impairment. Mult. Scler. Relat. Disord. 2022, 67, 104165. [Google Scholar] [CrossRef] [PubMed]
- Mayo, C.D.; Harrison, L.; Attwell-Pope, K.; Stuart-Hill, L.; Gawryluk, J.R. A Pilot Study of the Impact of an Exercise Intervention on Brain Structure, Cognition, and Psychosocial Symptoms in Individuals with Relapsing-Remitting Multiple Sclerosis. Pilot. Feasibility Stud. 2021, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Sandroff, B.M.; Benedict, R.H.B. Moderate-to-Vigorous Physical Activity Is Associated with Processing Speed, but Not Learning and Memory, in Cognitively Impaired Persons with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2022, 63, 103833. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Olsson, T.; Hillert, J.; Alfredsson, L.; Hedström, A.K. Influence of Oral Tobacco versus Smoking on Multiple Sclerosis Disease Activity and Progression. J. Neurol. Neurosurg. Psychiatry 2023, 94, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.E.; İnce, B.; Bingöl, A.; Erturk, S.; Altinoz, M.A.; Karadeli, H.H.; Koçer, A. Association between Smoking and Cognitive Impairment in Multiple Sclerosis. Neuropsychiatr. Dis. Treat. 2014, 10, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, E.; Cohen, J.A.; Ontaneda, D.; Nakamura, K.; Husak, S.; Love, T.E.; Fox, R.J.; Briggs, F.B.; Conway, D.S. The Impact of Cigarette Smoking on Cognitive Processing Speed and Brain Atrophy in Multiple Sclerosis. Mult. Scler. 2023, 29, 846–855. [Google Scholar] [CrossRef]
- Rodgers, J.; Friede, T.; Vonberg, F.W.; Constantinescu, C.S.; Coles, A.; Chataway, J.; Duddy, M.; Emsley, H.; Ford, H.; Fisniku, L.; et al. The Impact of Smoking Cessation on Multiple Sclerosis Disease Progression. Brain 2022, 145, 1368–1378. [Google Scholar] [CrossRef]
- Sangha, A.; Quon, M.; Pfeffer, G.; Orton, S.M. The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients 2023, 15, 2978. [Google Scholar] [CrossRef]
- Alhussain, F.; Alomar, M.; Alenazi, A.; Aldraihem, M.; Alshiha, L.; Bashir, S. The Relationship between Vitamin D Levels and Cognitive Impairment in Patients with Multiple Sclerosis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2021–2030. [Google Scholar]
- Spiezia, A.L.; Falco, F.; Manganelli, A.; Carotenuto, A.; Petracca, M.; Novarella, F.; Iacovazzo, C.; Servillo, G.; Lanzillo, R.; Morra, V.B.; et al. Low Serum 25 Hydroxy-Vitamin D Levels Are Associated with Cognitive Impairment in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 79, 105044. [Google Scholar] [CrossRef]
- Virgilio, E.; Vecchio, D.; Crespi, I.; Barbero, P.; Caloni, B.; Naldi, P.; Cantello, R.; Dianzani, U.; Comi, C. Serum Vitamin D as a Marker of Impaired Information Processing Speed and Early Disability in Multiple Sclerosis Patients. Brain Sci. 2021, 11, 1521. [Google Scholar] [CrossRef] [PubMed]
- Miclea, A.; Bagnoud, M.; Chan, A.; Hoepner, R. A Brief Review of the Effects of Vitamin D on Multiple Sclerosis. Front. Immunol. 2020, 11, 781. [Google Scholar] [CrossRef]
- Rao, R.V.; Subramaniam, K.G.; Gregory, J.; Bredesen, A.L.; Coward, C.; Okada, S.; Kelly, L.; Bredesen, D.E. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer’s Disease and MCI: A Review. Int. J. Mol. Sci. 2023, 24, 1659. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Banchero, S.; Casciaro, M.; Tonacci, A.; Billeci, L.; Nencioni, A.; Pioggia, G.; Genovese, S.; Monacelli, F.; Gangemi, S. Potential Predictors for Cognitive Decline in Vascular Dementia: A Machine Learning Analysis. Processes 2022, 10, 2088. [Google Scholar] [CrossRef]
- Brochet, B.; Clavelou, P.; Defer, G.; De Seze, J.; Louapre, C.; Magnin, E.; Ruet, A.; Thomas-Anterion, C.; Vermersch, P. Cognitive Impairment in Secondary Progressive Multiple Sclerosis: Effect of Disease Duration, Age, and Progressive Phenotype. Brain Sci. 2022, 12, 183. [Google Scholar] [CrossRef]
- Zemach, M.; Vakil, E.; Lifshitz, H. Brain Reserve Theory: Are Adults with Intellectual Disability More Vulnerable to Age than Peers with Typical Development? J. Appl. Res. Intellect. Disabil. 2023, 36, 796–811. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive Reserve in Ageing and Alzheimer’s Disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef]
- Nelson, M.E.; Jester, D.J.; Petkus, A.J.; Andel, R. Cognitive Reserve, Alzheimer’s Neuropathology, and Risk of Dementia: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2021, 31, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Law, C.K.; Lam, F.M.; Chung, R.C.; Pang, M.Y. Physical Exercise Attenuates Cognitive Decline and Reduces Behavioural Problems in People with Mild Cognitive Impairment and Dementia: A Systematic Review. J. Physiother. 2020, 66, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Proschinger, S.; Kuhwand, P.; Rademacher, A.; Walzik, D.; Warnke, C.; Zimmer, P.; Joisten, N. Fitness, Physical Activity, and Exercise in Multiple Sclerosis: A Systematic Review on Current Evidence for Interactions with Disease Activity and Progression. J. Neurol. 2022, 269, 2922–2940. [Google Scholar] [CrossRef] [PubMed]
- Ramo-Tello, C.; Blanco, Y.; Brieva, L.; Casanova, B.; Martínez-Cáceres, E.; Ontaneda, D.; Ramió-Torrentá, L.; Rovira, À. Recommendations for the Diagnosis and Treatment of Multiple Sclerosis Relapses. J. Pers. Med. 2021, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Carle, G.; Abgrall-Barbry, G. Conduites suicidaires et corticothérapie: À propos d’un cas [Corticotherapy and suicidal behavior: A case report]. Encephale 2016, 42, 272–276. [Google Scholar] [CrossRef]
- Björnsson, E.S.; Vucic, V.; Stirnimann, G.; Robles-Díaz, M. Role of Corticosteroids in Drug-Induced Liver Injury. A Systematic Review. Front. Pharmacol. 2022, 13, 820724. [Google Scholar] [CrossRef]
- Sodero, A.; Squitieri, M.; Mazzeo, S.; Pasca, M.; Matà, S.; Pieri, F.; Bessi, V.; Sorbi, S. Acute Symptomatic Sinus Bradycardia in High-Dose Methylprednisolone Therapy in a Woman with Inflammatory Myelitis: A Case Report and Review of the Literature. Clin. Med. Insights Case Rep. 2019, 12, 1179547619831026. [Google Scholar] [CrossRef]
- Kobza, A.O.; Herman, D.; Papaioannou, A.; Lau, A.N.; Adachi, J.D. Understanding and Managing Corticosteroid-Induced Osteoporosis. Open Access Rheumatol. 2021, 13, 177–190. [Google Scholar] [CrossRef]
- Smets, I.; Van Deun, L.; Bohyn, C.; van Pesch, V.; Vanopdenbosch, L.; Dive, D.; Bissay, V.; Dubois, B. Corticosteroids in the management of acute multiple sclerosis exacerbations. Acta Neurol. Belg. 2017, 117, 623–633. [Google Scholar] [CrossRef]
- Kania, K.; Ambrosius, W.; Kozubski, W.; Kalinowska-Łyszczarz, A. The Impact of Disease Modifying Therapies on Cognitive Functions Typically Impaired in Multiple Sclerosis Patients: A Clinician’s Review. Front. Neurol. 2023, 14, 1222574. [Google Scholar] [CrossRef]
- Kasindi, A.; Fuchs, D.T.; Koronyo, Y.; Rentsendorj, A.; Black, K.L.; Koronyo-Hamaoui, M. Glatiramer Acetate Immunomodulation: Evidence of Neuroprotection and Cognitive Preservation. Cells 2022, 11, 1578. [Google Scholar] [CrossRef]
- Bakirtzis, C.; Konstantinopoulou, E.; Langdon, D.W.; Grigoriadou, E.; Minti, F.; Nikolaidis, I.; Boziki, M.K.; Tatsi, T.; Ioannidis, P.; Karapanayiotides, T.; et al. Long-Term Effects of Prolonged-Release Fampridine on Cognitive Function, Fatigue, Mood and Quality of Life of MS Patients: The IGNITE Study. J. Neurol. Sci. 2018, 395, 106–112. [Google Scholar] [CrossRef]
- Chen, M.H.; Chiaravalloti, N.D.; DeLuca, J. Neurological update: Cognitive rehabilitation in multiple sclerosis. J. Neurol. 2021, 268, 4908–4914. [Google Scholar] [CrossRef]
- Kumar, J.; Patel, T.; Sugandh, F.; Dev, J.; Kumar, U.; Adeeb, M.; Kachhadia, M.P.; Puri, P.; Prachi, F.; Zaman, M.U.; et al. Innovative Approaches and Therapies to Enhance Neuroplasticity and Promote Recovery in Patients with Neurological Disorders: A Narrative Review. Cureus 2023, 15, e41914. [Google Scholar] [CrossRef]
- Longley, W.A. Cognitive rehabilitation in multiple sclerosis. Aust. J. Gen. Pract. 2022, 51, 233–237. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; Moore, N.B.; DeLuca, J. The efficacy of the modified Story Memory Technique in progressive MS. Mult. Scler. 2020, 26, 354–362. [Google Scholar] [CrossRef]
- Nauta, I.M.; Bertens, D.; Fasotti, L.; Fieldhouse, J.; Uitdehaag, B.M.; Kessels, R.P.; Speckens, A.E.; de Jong, B.A. Cognitive rehabilitation and mindfulness reduce cognitive complaints in multiple sclerosis (REMIND-MS): A randomized controlled trial. Mult. Scler. Relat. Disord. 2023, 71, 104529. [Google Scholar] [CrossRef]
- Ghadiri, F.; Naser Moghadasi, A.; Sahraian, M.A. Telemedicine as a strategic intervention for cognitive rehabilitation in MS patients during COVID-19. Acta Neurol. Belg. 2022, 122, 23–29. [Google Scholar] [CrossRef]
Pathophysiological Mechanisms/Related Factors | Relevant References | ||
---|---|---|---|
Non-modifiable risk factors | Age | Physiological aging mechanisms Neurodegeneration | [30,31,32,33] |
Cognitive reserve | Formal education Informal cognitive enrichment Personality traits | [34,35,36] | |
Modifiable risk factors (clinical risk factors) | Anxiety Depression | Systemic and neuroinflammation Adverse treatment effects | [37,38] |
EDSS score | Increased lesion load | [39,40] | |
Modifiable risk factors (lifestyle risk factors) | Diet | Gut–brain axis Renin–angiotensin–aldosterone system | [41,42,43,44] |
Lack of physical exercise | To be determined | [45,46] | |
Smoking | Increased plaque load Reduced gray matter fraction | [47,48,49,50] | |
Vitamin D deficiency | Gene transcription modulation T cells, B cells, and macrophages inhibition Regulation of Ca2+ intake in neurons Astrocyte activation, Oligodendrocyte maturation | [51,52,53,54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiner, T.G.; Mihoc, I.; Grigore, E.; Schreiner, O.D. Risk Factors for Cognitive Impairment in Multiple Sclerosis Patients. Sclerosis 2024, 2, 77-87. https://doi.org/10.3390/sclerosis2020006
Schreiner TG, Mihoc I, Grigore E, Schreiner OD. Risk Factors for Cognitive Impairment in Multiple Sclerosis Patients. Sclerosis. 2024; 2(2):77-87. https://doi.org/10.3390/sclerosis2020006
Chicago/Turabian StyleSchreiner, Thomas Gabriel, Iustina Mihoc, Ecaterina Grigore, and Oliver Daniel Schreiner. 2024. "Risk Factors for Cognitive Impairment in Multiple Sclerosis Patients" Sclerosis 2, no. 2: 77-87. https://doi.org/10.3390/sclerosis2020006
APA StyleSchreiner, T. G., Mihoc, I., Grigore, E., & Schreiner, O. D. (2024). Risk Factors for Cognitive Impairment in Multiple Sclerosis Patients. Sclerosis, 2(2), 77-87. https://doi.org/10.3390/sclerosis2020006