Current and Emerging Treatment Options in Pediatric Onset Multiple Sclerosis
Abstract
:1. Introduction
2. Treatment of Pediatric-Onset Multiple Sclerosis
2.1. Disease-Modifying Therapies
2.2. Interferons
2.3. Glatiramer Acetate
2.4. Fingolimod
2.5. Teriflunomide
2.6. Azathioprine
2.7. Cyclophosphamide
2.8. Dimethyl Fumarate
2.9. Rituximab
2.10. Daclizumab
2.11. Alemtuzumab
2.12. Ocrelizumab
2.13. Natalizumab
2.14. Mitoxantrone
2.15. Ofatumumab
2.16. Siponimod
2.17. Vitamin D
2.18. T-Cell Receptor (TCR) Vaccine
2.19. Stem Cell Therapy
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Jeong, A.; Oleske, D.M.; Holman, J. Epidemiology of Pediatric-Onset Multiple Sclerosis: A Systematic Review of the Literature. J. Child. Neurol. 2019, 34, 705–712. [Google Scholar] [CrossRef]
- Jakimovski, D.; Awan, S.; Eckert, S.P.; Farooq, O.; Weinstock-Guttman, B. Multiple Sclerosis in Children: Differential Diagnosis, Prognosis, and Disease-Modifying Treatment. CNS Drugs 2022, 36, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Balijepalli, C.; Desai, K.; Gullapalli, L.; Druyts, E. Epidemiology of pediatric multiple sclerosis: A systematic literature review and meta-analysis. Mult. Scler. Relat. Disord. 2020, 44, 102260. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.M.S. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef]
- Casetta, I.; Granieri, E.; Malagù, S.; Tola, M.R.; Paolino, E.; Caniatti, L.M.; Govoni, V.; Monetti, V.C.; Fainardi, E. Environmental risk factors and multiple sclerosis: A community-based, case-control study in the province of Ferrara, Italy. Neuroepidemiology 1994, 13, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Zilber, N.; Kahana, E. Risk factors for multiple sclerosis: A case-control study in Israel. Acta Neurol. Scand. 1996, 94, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F.; Page, W.F. Epidemiology of multiple sclerosis in US veterans: VII. Risk factors for MS. Neurology 1997, 48, 204–213. [Google Scholar] [CrossRef]
- Conrad, N.; Misra, S.; Verbakel, J.Y.; Verbeke, G.; Molenberghs, G.; Taylor, P.N.; Mason, J.; Sattar, N.; McMurray, J.J.V.; McInnes, I.B.; et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet 2023, 401, 1878–1890. [Google Scholar] [CrossRef]
- Hillert, J. Socioeconomic status and multiple sclerosis outcome. Nat. Rev. Neurol. 2020, 16, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Goulden, R.; Ibrahim, T.; Wolfson, C. Is high socioeconomic status a risk factor for multiple sclerosis? A systematic review. Eur. J. Neurol. 2015, 22, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Ghezzi, A.; Bar-Or, A.; Mikaeloff, Y.; Tardieu, M. Multiple sclerosis in children: Clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurol. 2007, 6, 887–902. [Google Scholar] [CrossRef]
- Mikaeloff, Y.; Caridade, G.; Assi, S.; Suissa, S.; Tardieu, M. Prognostic factors for early severity in a childhood multiple sclerosis cohort. Pediatrics 2006, 118, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Willer, C.J.; Dyment, D.A.; Risch, N.J.; Sadovnick, A.D.; Ebers, G.C.; Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2003, 100, 12877–12882. [Google Scholar] [CrossRef]
- Banwell, B.L. Pediatric multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2004, 4, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Lowy, D.; Chitnis, T. Pathogenesis of pediatric multiple sclerosis. J. Child. Neurol. 2012, 27, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Bar-Or, A.; Arnold, D.L.; Sadovnick, D.; Narayanan, S.; McGowan, M.; O’Mahony, J.; Magalhaes, S.; Hanwell, H.; Vieth, R.; et al. Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: A prospective national cohort study. Lancet Neurol. 2011, 10, 436–445. [Google Scholar] [CrossRef]
- Disanto, G.; Magalhaes, S.; Handel, A.E.; Morrison, K.M.; Sadovnick, A.D.; Ebers, G.C.; Banwell, B.; Bar-Or, A. HLA-DRB1 confers increased risk of pediatric-onset MS in children with acquired demyelination. Neurology 2011, 76, 781–786. [Google Scholar] [CrossRef]
- Munger, K.L.; Chitnis, T.; Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 2009, 73, 1543–1550. [Google Scholar] [CrossRef]
- Dickinson, J.L.; Perera, D.I.; van der Mei, A.F.; Ponsonby, A.L.; Polanowski, A.M.; Thomson, R.J.; Taylor, B.V.; McKay, J.D.; Stankovich, J.; Dwyer, T. Past environmental sun exposure and risk of multiple sclerosis: A role for the Cdx-2 Vitamin D receptor variant in this interaction. Mult. Scler. 2009, 15, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Mikaeloff, Y.; Caridade, G.; Tardieu, M.; Suissa, S.; KIDSEP Study Group. Parental smoking at home and the risk of childhood-onset multiple sclerosis in children. Brain 2007, 130, 2589–2595. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Krupp, L.; Kennedy, J.; Tellier, R.; Tenembaum, S.; Ness, J.; Belman, A.; Boiko, A.; Bykova, O.; Waubant, E.; et al. Clinical features and viral serologies in children with multiple sclerosis: A multinational observational study. Lancet Neurol. 2007, 6, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Olsson, T.; Alfredsson, L. Smoking is a major preventable risk factor for multiple sclerosis. Mult. Scler. 2016, 22, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.; Chitnis, T. Association Between Cigarette Smoking and Multiple Sclerosis: A Review. JAMA Neurol. 2020, 77, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Renoux, C.; Vukusic, S.; Mikaeloff, Y.; Edan, G.; Clanet, M.; Dubois, B.; Debouverie, M.; Brochet, B.; Lebrun-Frenay, C.; Pelletier, J.; et al. Natural history of multiple sclerosis with childhood onset. N. Engl. J. Med. 2007, 356, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Deiva, K. Pediatric onset multiple sclerosis. Rev. Neurol. 2020, 176, 30–36. [Google Scholar] [CrossRef]
- Pohl, D.; Alper, G.; Van Haren, K.; Kornberg, A.J.; Lucchinetti, C.F.; Tenembaum, S.; Belman, A.L. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome. Neurology 2016, 87, S38–S45. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, W.J.; Hardy, T.A.; Fazekas, F.; Miller, D.H. Diagnosis of multiple sclerosis: Progress and challenges. Lancet 2017, 389, 1336–1346. [Google Scholar] [CrossRef]
- Krupp, L.B.; Tardieu, M.; Amato, M.P.; Banwell, B.; Chitnis, T.; Dale, R.C.; Ghezzi, A.; Hintzen, R.; Kornberg, A.; Pohl, D.; et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: Revisions to the 2007 definitions. Mult. Scler. 2013, 19, 1261–1267. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Schwenkenbecher, P.; Wurster, U.; Konen, F.F.; Gingele, S.; Suhs, K.W.; Wattjes, M.P.; Stangel, M.; Skripuletz, T. Impact of the McDonald Criteria 2017 on Early Diagnosis of Relapsing-Remitting Multiple Sclerosis. Front. Neurol. 2019, 10, 188. [Google Scholar] [CrossRef]
- Fadda, G.; Brown, R.A.; Longoni, G.; Castro, D.A.; O’Mahony, J.; Verhey, L.H.; Branson, H.M.; Waters, P.; Bar-Or, A.; Marrie, R.A.; et al. MRI and laboratory features and the performance of international criteria in the diagnosis of multiple sclerosis in children and adolescents: A prospective cohort study. Lancet Child. Adolesc. Health 2018, 2, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.P.; Healy, B.C.; Polgar-Turcsanyi, M.; Chitnis, T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch. Neurol. 2009, 66, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Waubant, E.; Chabas, D.; Okuda, D.T.; Glenn, O.; Mowry, E.; Henry, R.G.; Strober, J.B.; Soares, B.; Wintermark, M.; Pelletier, D. Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of multiple sclerosis onset vs adults. Arch. Neurol. 2009, 66, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.A.; Weinstock-Guttman, B.; Ramanathan, M.; Ramasamy, D.P.; Willis, L.; Cox, J.L.; Zivadinov, R. Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain 2009, 132, 3392–3400. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, D.; Simone, M.; Iaffaldano, P.; Brescia Morra, V.; Lanzillo, R.; Filippi, M.; Romeo, M.; Patti, F.; Chisari, C.G.; Cocco, E.; et al. Risk of Persistent Disability in Patients With Pediatric-Onset Multiple Sclerosis. JAMA Neurol. 2021, 78, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Kopp, T.I.; Blinkenberg, M.; Chalmer, T.A.; Petersen, T.; Ravnborg, M.H.; Soelberg Sorensen, P.; Magyari, M. Predictors of treatment outcome in patients with paediatric onset multiple sclerosis. Mult. Scler. 2020, 26, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef]
- Meyer-Moock, S.; Feng, Y.S.; Maeurer, M.; Dippel, F.W.; Kohlmann, T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014, 14, 58. [Google Scholar] [CrossRef]
- Şen, S. Neurostatus and EDSS Calculation with Cases. Noro Psikiyatr. Ars. 2018, 55, S80–S83. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B. Treatment of children and adolescents with multiple sclerosis. Expert Rev. Neurother. 2005, 5, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.T.; Gorman, M.P.; Rensel, M.R.; Austin, T.E.; Hertz, D.P.; Kuntz, N.L.; Network of Pediatric Multiple Sclerosis Centers of Excellence of National Multiple Sclerosis Society. Management of pediatric central nervous system demyelinating disorders: Consensus of United States neurologists. J. Child. Neurol. 2011, 26, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Tenembaum, S.N. Ethical challenges in paediatric clinical trials in multiple sclerosis. Ther. Adv. Neurol. Disord. 2012, 5, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, A.; Amato, M.P.; Capobianco, M.; Gallo, P.; Marrosu, M.G.; Martinelli, V.; Milanese, C.; Moiola, L.; Milani, N.; La Mantia, L.; et al. Treatment of early-onset multiple sclerosis with intramuscular interferonbeta-1a: Long-term results. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2007, 28, 127–132. [Google Scholar] [CrossRef]
- Pohl, D.; Rostasy, K.; Gartner, J.; Hanefeld, F. Treatment of early onset multiple sclerosis with subcutaneous interferon beta-1a. Neurology 2005, 64, 888–890. [Google Scholar] [CrossRef]
- Tenembaum, S.N.; Banwell, B.; Pohl, D.; Krupp, L.B.; Boyko, A.; Meinel, M.; Lehr, L.; Rocak, S.; Cantogno, E.V.; Moraga, M.S.; et al. Subcutaneous interferon Beta-1a in pediatric multiple sclerosis: A retrospective study. J. Child. Neurol. 2013, 28, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Banwell, B.; Reder, A.T.; Krupp, L.; Tenembaum, S.; Eraksoy, M.; Alexey, B.; Pohl, D.; Freedman, M.; Schelensky, L.; Antonijevic, I. Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology 2006, 66, 472–476. [Google Scholar] [CrossRef]
- Gartner, J.; Bruck, W.; Weddige, A.; Hummel, H.; Norenberg, C.; Bugge, J.P.; Group, B.S. Interferon beta-1b in treatment-naive paediatric patients with relapsing-remitting multiple sclerosis: Two-year results from the BETAPAEDIC study. Mult. Scler. J. Exp. Transl. Clin. 2017, 3, 2055217317747623. [Google Scholar] [CrossRef]
- Ghezzi, A.; Amato, M.P.; Annovazzi, P.; Capobianco, M.; Gallo, P.; La Mantia, L.; Marrosu, M.G.; Martinelli, V.; Milani, N.; Moiola, L.; et al. Long-term results of immunomodulatory treatment in children and adolescents with multiple sclerosis: The Italian experience. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2009, 30, 193–199. [Google Scholar] [CrossRef]
- Chitnis, T.; Arnold, D.L.; Banwell, B.; Bruck, W.; Ghezzi, A.; Giovannoni, G.; Greenberg, B.; Krupp, L.; Rostasy, K.; Tardieu, M.; et al. Trial of Fingolimod versus Interferon Beta-1a in Pediatric Multiple Sclerosis. N. Engl. J. Med. 2018, 379, 1017–1027. [Google Scholar] [CrossRef]
- Chitnis, T.; Banwell, B.; Kappos, L.; Arnold, D.L.; Gucuyener, K.; Deiva, K.; Skripchenko, N.; Cui, L.Y.; Saubadu, S.; Hu, W.; et al. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): A multicentre, double-blind, phase 3, randomised, placebo-controlled trial. Lancet Neurol. 2021, 20, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Makhani, N.; Gorman, M.P.; Branson, H.M.; Stazzone, L.; Banwell, B.L.; Chitnis, T. Cyclophosphamide therapy in pediatric multiple sclerosis. Neurology 2009, 72, 2076–2082. [Google Scholar] [CrossRef] [PubMed]
- Alroughani, R.; Das, R.; Penner, N.; Pultz, J.; Taylor, C.; Eraly, S. Safety and Efficacy of Delayed-Release Dimethyl Fumarate in Pediatric Patients With Relapsing Multiple Sclerosis (FOCUS). Pediatr. Neurol. 2018, 83, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Alroughani, R.; Huppke, P.; Mazurkiewicz-Beldzinska, M.; Blaschek, A.; Valis, M.; Aaen, G.; Pultz, J.; Peng, X.; Beynon, V. Delayed-Release Dimethyl Fumarate Safety and Efficacy in Pediatric Patients With Relapsing-Remitting Multiple Sclerosis. Front. Neurol. 2020, 11, 606418. [Google Scholar] [CrossRef] [PubMed]
- Salzer, J.; Lycke, J.; Wickstrom, R.; Naver, H.; Piehl, F.; Svenningsson, A. Rituximab in paediatric onset multiple sclerosis: A case series. J. Neurol. 2016, 263, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Krysko, K.M.; Graves, J.S.; Rensel, M.; Weinstock-Guttman, B.; Rutatangwa, A.; Aaen, G.; Belman, A.; Benson, L.; Chitnis, T.; Gorman, M.; et al. Real-World Effectiveness of Initial Disease-Modifying Therapies in Pediatric Multiple Sclerosis. Ann. Neurol. 2020, 88, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Kolb, C.; Ramanathan, M.; Zivadinov, R.; Weinstock-Guttman, B. Interferon beta for Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a032003. [Google Scholar] [CrossRef] [PubMed]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Dhib-Jalbut, S.; Marks, S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology 2010, 74 (Suppl. S1), S17–S24. [Google Scholar] [CrossRef]
- Weinstock-Guttman, B.; Nair, K.V.; Glajch, J.L.; Ganguly, T.C.; Kantor, D. Two decades of glatiramer acetate: From initial discovery to the current development of generics. J. Neurol. Sci. 2017, 376, 255–259. [Google Scholar] [CrossRef] [PubMed]
- La Mantia, L.; Munari, L.M.; Lovati, R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst. Rev. 2010, 5, CD004678. [Google Scholar] [CrossRef] [PubMed]
- Kornek, B.; Bernert, G.; Balassy, C.; Geldner, J.; Prayer, D.; Feucht, M. Glatiramer acetate treatment in patients with childhood and juvenile onset multiple sclerosis. Neuropediatrics 2003, 34, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Makhani, N.; Ngan, B.Y.; Kamath, B.M.; Yeh, E.A. Glatiramer acetate-induced acute hepatotoxicity in an adolescent with MS. Neurology 2013, 81, 850–852. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, D.; Zaffaroni, M.; Moiola, L.; Lorefice, L.; Fenu, G.; Iaffaldano, P.; Simone, M.; Fanelli, F.; Patti, F.; D’Amico, E.; et al. Long-term follow-up of pediatric MS patients starting treatment with injectable first-line agents: A multicentre, Italian, retrospective, observational study. Mult. Scler. 2019, 25, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Rensel, M. Review Of The Safety, Efficacy And Tolerability Of Fingolimod In The Treatment Of Pediatric Patients With Relapsing-Remitting Forms Of Multiple Sclerosis (RRMS). Pediatr. Health Med. Ther. 2019, 10, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.F.; Bowen, J.D.; Reder, A.T. The Direct Effects of Fingolimod in the Central Nervous System: Implications for Relapsing Multiple Sclerosis. CNS Drugs 2016, 30, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, R.; Van Horssen, J.; Verzijl, D.; Witte, M.; Ronken, E.; Van Het Hof, B.; Lakeman, K.; Dijkstra, C.D.; Van Der Valk, P.; Reijerkerk, A.; et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia 2010, 58, 1465–1476. [Google Scholar] [CrossRef]
- Barkhof, F.; de Jong, R.; Sfikas, N.; de Vera, A.; Francis, G.; Cohen, J.; TRANSFORMS Study Group. The influence of patient demographics, disease characteristics and treatment on brain volume loss in Trial Assessing Injectable Interferon vs FTY720 Oral in Relapsing-Remitting Multiple Sclerosis (TRANSFORMS), a phase 3 study of fingolimod in multiple sclerosis. Mult. Scler. 2014, 20, 1704–1713. [Google Scholar] [CrossRef]
- Calabresi, P.A.; Radue, E.W.; Goodin, D.; Jeffery, D.; Rammohan, K.W.; Reder, A.T.; Vollmer, T.; Agius, M.A.; Kappos, L.; Stites, T.; et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014, 13, 545–556. [Google Scholar] [CrossRef]
- Cohen, J.A.; Barkhof, F.; Comi, G.; Hartung, H.P.; Khatri, B.O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G.; et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 402–415. [Google Scholar] [CrossRef]
- Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Radue, E.W.; O’Connor, P.; Polman, C.H.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Mueller-Lenke, N.; Agoropoulou, C.; Holdbrook, F.; de Vera, A.; et al. Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch. Neurol. 2012, 69, 1259–1269. [Google Scholar] [CrossRef]
- Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W.; et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 355, 1124–1140. [Google Scholar] [CrossRef]
- Wu, X.; Xue, T.; Wang, Z.; Chen, Z.; Zhang, X.; Zhang, W.; Wang, Z. Different Doses of Fingolimod in Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2021, 12, 621856. [Google Scholar] [CrossRef]
- Huh, S.Y.; Kim, S.H.; Kim, K.H.; Kwon, Y.N.; Kim, S.M.; Kim, S.W.; Shin, H.Y.; Chung, Y.H.; Min, J.H.; So, J.; et al. Safety and Temporal Pattern of the Lymphocyte Count During Fingolimod Therapy in Patients With Multiple Sclerosis: Real-World Korean Experience. J. Clin. Neurol. 2022, 18, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Gutlapalli, S.D.; Sohail, M.; Patel, P.; Midha, S.; Shukla, S.; Dhamija, D.; Bello, A.O.; Elshaikh, A.O. Fingolimod-Associated Macular Edema in the Treatment of Multiple Sclerosis. Cureus 2023, 15, e41520. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zhang, C.; Zhao, X.; Zhang, Y.; Dai, Q.; Li, Y.; Chu, L. Teriflunomide for multiple sclerosis. Cochrane Database Syst. Rev. 2016, 3, CD009882. [Google Scholar] [CrossRef]
- Bar-Or, A.; Pachner, A.; Menguy-Vacheron, F.; Kaplan, J.; Wiendl, H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014, 74, 659–674. [Google Scholar] [CrossRef]
- Costa, G.D.; Comi, G. Teriflunomide: An oral therapy for first-line treatment of children and adolescents living with relapsing-remitting multiple sclerosis. Expert Rev. Neurother. 2023, 23, 681–687. [Google Scholar] [CrossRef]
- Paik, J. Teriflunomide: Pediatric First Approval. Paediatr. Drugs 2021, 23, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Sanofi Provides Update on Aubagio® (Teriflunomide) Submission for Children and Adolescents with Relapsing-Remitting Multiple Sclerosis in the U.S. Available online: https://www.news.sanofi.us/2021-06-11-Sanofi-provides-update-on-Aubagio-R-teriflunomide-submission-for-children-and-adolescents-with-relapsing-remitting-multiple-sclerosis-in-the-U-S (accessed on 12 February 2024).
- Laurson-Doube, J.; Rijke, N.; Helme, A.; Baneke, P.; Banwell, B.; Viswanathan, S.; Hemmer, B.; Yamout, B. Ethical use of off-label disease-modifying therapies for multiple sclerosis. Mult. Scler. 2021, 27, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Tiede, I.; Fritz, G.; Strand, S.; Poppe, D.; Dvorsky, R.; Strand, D.; Lehr, H.A.; Wirtz, S.; Becker, C.; Atreya, R.; et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Investig. 2003, 111, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Casetta, I.; Iuliano, G.; Filippini, G. Azathioprine for multiple sclerosis. Cochrane Database Syst. Rev. 2007, 2007, CD003982. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Janghorbani, M.; Shaygannejad, V. Comparison of interferon beta products and azathioprine in the treatment of relapsing-remitting multiple sclerosis. J. Neurol. 2007, 254, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Srivastava, M.V.P.; Bhatia, R.; Goyal, V.; Singh, M.B.; Vishnu, V.Y.; Prabhakar, A. A Real-World Experience of Azathioprine Versus First-Line Disease-Modifying Therapy in Relapsing-Remitting Multiple Sclerosis-A Prospective Cohort Study. Brain Sci. 2023, 13, 1249. [Google Scholar] [CrossRef] [PubMed]
- Costanzi, C.; Matiello, M.; Lucchinetti, C.F.; Weinshenker, B.G.; Pittock, S.J.; Mandrekar, J.; Thapa, P.; McKeon, A. Azathioprine: Tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 2011, 77, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, Q.; Lu, T.; Sun, X.; Fang, L.; Lu, Z.; Hu, X.; Kermode, A.; Qiu, W. Azathioprine therapy in a case of pediatric multiple sclerosis that was seropositive for MOG-IgG. J. Clin. Neurosci. 2017, 38, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Ogino, M.H.; Tadi, P. Cyclophosphamide. In StatPearls; StatPearls Publishing LLC.: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Gomez-Figueroa, E.; Gutierrez-Lanz, E.; Alvarado-Bolanos, A.; Casallas-Vanegas, A.; Garcia-Estrada, C.; Zabala-Angeles, I.; Cadena-Fernandez, A.; Veronica, R.A.; Irene, T.F.; Flores-Rivera, J. Cyclophosphamide treatment in active multiple sclerosis. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2021, 42, 3775–3780. [Google Scholar] [CrossRef]
- Siddhartha, G.; Vijay, P. R-CHOP versus R-CVP in the treatment of follicular lymphoma: A meta-analysis and critical appraisal of current literature. J. Hematol. Oncol. 2009, 2, 14. [Google Scholar] [CrossRef]
- Talar-Williams, C.; Hijazi, Y.M.; Walther, M.M.; Linehan, W.M.; Hallahan, C.W.; Lubensky, I.; Kerr, G.S.; Hoffman, G.S.; Fauci, A.S.; Sneller, M.C. Cyclophosphamide-induced cystitis and bladder cancer in patients with Wegener granulomatosis. Ann. Intern. Med. 1996, 124, 477–484. [Google Scholar] [CrossRef]
- Radis, C.D.; Kahl, L.E.; Baker, G.L.; Wasko, M.C.; Cash, J.M.; Gallatin, A.; Stolzer, B.L.; Agarwal, A.K.; Medsger, T.A., Jr.; Kwoh, C.K. Effects of cyclophosphamide on the development of malignancy and on long-term survival of patients with rheumatoid arthritis. A 20-year followup study. Arthritis Rheum. 1995, 38, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Chemaitilly, W.; Mertens, A.C.; Mitby, P.; Whitton, J.; Stovall, M.; Yasui, Y.; Robison, L.L.; Sklar, C.A. Acute ovarian failure in the childhood cancer survivor study. J. Clin. Endocrinol. Metab. 2006, 91, 1723–1728. [Google Scholar] [CrossRef]
- Yadav, S.K.; Soin, D.; Ito, K.; Dhib-Jalbut, S. Insight into the mechanism of action of dimethyl fumarate in multiple sclerosis. J. Mol. Med. 2019, 97, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Krysko, K.M.; Graves, J.; Rensel, M.; Weinstock-Guttman, B.; Aaen, G.; Benson, L.; Chitnis, T.; Gorman, M.; Goyal, M.; Krupp, L.; et al. Use of newer disease-modifying therapies in pediatric multiple sclerosis in the US. Neurology 2018, 91, e1778–e1787. [Google Scholar] [CrossRef]
- Ghezzi, A.; Banwell, B.; Bar-Or, A.; Chitnis, T.; Dale, R.C.; Gorman, M.; Kornek, B.; Krupp, L.; Krysko, K.M.; Nosadini, M.; et al. Rituximab in patients with pediatric multiple sclerosis and other demyelinating disorders of the CNS: Practical considerations. Mult. Scler. 2021, 27, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- The, L. End of the road for daclizumab in multiple sclerosis. Lancet 2018, 391, 1000. [Google Scholar] [CrossRef]
- Gorman, M.P.; Tillema, J.M.; Ciliax, A.M.; Guttmann, C.R.; Chitnis, T. Daclizumab use in patients with pediatric multiple sclerosis. Arch. Neurol. 2012, 69, 78–81. [Google Scholar] [CrossRef]
- Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S.G. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int. J. Mol. Sci. 2015, 16, 16414–16439. [Google Scholar] [CrossRef]
- Jure Hunt, D.; Traboulsee, A. Short-term outcomes of pediatric multiple sclerosis patients treated with alemtuzumab at a Canadian University multiple sclerosis clinic. Mult. Scler. J. Exp. Transl. Clin. 2020, 6, 2055217320926613. [Google Scholar] [CrossRef]
- Margoni, M.; Rinaldi, F.; Miante, S.; Franciotta, S.; Perini, P.; Gallo, P. Alemtuzumab following natalizumab in highly active paediatric-onset multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2019, 5, 2055217319875471. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Ocrelizumab: A Review in Multiple Sclerosis. Drugs 2022, 82, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Bibinoglu Amirov, C.; Saltik, S.; Yalcinkaya, C.; Tutuncu, M.; Saip, S.; Siva, A.; Uygunoglu, U. Ocrelizumab in pediatric multiple sclerosis. Eur. J. Paediatr. Neurol. 2023, 43, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Margoni, M.; Rinaldi, F.; Perini, P.; Gallo, P. Therapy of Pediatric-Onset Multiple Sclerosis: State of the Art, Challenges, and Opportunities. Front. Neurol. 2021, 12, 676095. [Google Scholar] [CrossRef] [PubMed]
- Faulds, D.; Balfour, J.A.; Chrisp, P.; Langtry, H.D. Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs 1991, 41, 400–449. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J.; Figgitt, D.P. Mitoxantrone: A review of its use in multiple sclerosis. CNS Drugs 2004, 18, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Hartung, H.P.; Gonsette, R.; Konig, N.; Kwiecinski, H.; Guseo, A.; Morrissey, S.P.; Krapf, H.; Zwingers, T.; Mitoxantrone in Multiple Sclerosis Study, G. Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomised, multicentre trial. Lancet 2002, 360, 2018–2025. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Afzali, P.; Abtahi, S.H.; Ramagopalan, S.V.; Nourian, S.M.; Murray, R.T.; Fereidan-Esfahani, M. Safety and efficacy of mitoxantrone in pediatric patients with aggressive multiple sclerosis. Eur. J. Paediatr. Neurol. 2014, 18, 119–125. [Google Scholar] [CrossRef]
- Hagenbeek, A.; Gadeberg, O.; Johnson, P.; Pedersen, L.M.; Walewski, J.; Hellmann, A.; Link, B.K.; Robak, T.; Wojtukiewicz, M.; Pfreundschuh, M.; et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: Results of a phase 1/2 trial. Blood 2008, 111, 5486–5495. [Google Scholar] [CrossRef]
- Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N. Engl. J. Med. 2020, 383, 546–557. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cross, A.H.; Winthrop, K.; Wiendl, H.; Nicholas, J.; Meuth, S.G.; Giacomini, P.S.; Sacca, F.; Mancione, L.; Zielman, R.; et al. Safety experience with continued exposure to ofatumumab in patients with relapsing forms of multiple sclerosis for up to 3.5 years. Mult. Scler. 2022, 28, 1576–1590. [Google Scholar] [CrossRef] [PubMed]
- Gergely, P.; Nuesslein-Hildesheim, B.; Guerini, D.; Brinkmann, V.; Traebert, M.; Bruns, C.; Pan, S.; Gray, N.S.; Hinterding, K.; Cooke, N.G.; et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br. J. Pharmacol. 2012, 167, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Gentile, A.; Musella, A.; Bullitta, S.; Fresegna, D.; De Vito, F.; Fantozzi, R.; Piras, E.; Gargano, F.; Borsellino, G.; Battistini, L.; et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J. Neuroinflamm. 2016, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Selmaj, K.; Li, D.K.; Hartung, H.P.; Hemmer, B.; Kappos, L.; Freedman, M.S.; Stuve, O.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): An adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013, 12, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Simpson, S., Jr.; van der Mei, I.; Blizzard, L.; Havrdova, E.; Horakova, D.; Shaygannejad, V.; Lugaresi, A.; Izquierdo, G.; Trojano, M.; et al. Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Tremlett, H.; Zhu, F.; Ascherio, A.; Munger, K.L. Sun exposure over the life course and associations with multiple sclerosis. Neurology 2018, 90, e1191–e1199. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M.; Sakiyama, R.; Coty, W.A. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J. Neurochem. 1985, 44, 1138–1141. [Google Scholar] [CrossRef]
- Yu, J.; Gattoni-Celli, M.; Zhu, H.; Bhat, N.R.; Sambamurti, K.; Gattoni-Celli, S.; Kindy, M.S. Vitamin D3-enriched diet correlates with a decrease of amyloid plaques in the brain of AbetaPP transgenic mice. J. Alzheimers Dis. 2011, 25, 295–307. [Google Scholar] [CrossRef]
- Boontanrart, M.; Hall, S.D.; Spanier, J.A.; Hayes, C.E.; Olson, J.K. Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J. Neuroimmunol. 2016, 292, 126–136. [Google Scholar] [CrossRef]
- de la Fuente, A.G.; Errea, O.; van Wijngaarden, P.; Gonzalez, G.A.; Kerninon, C.; Jarjour, A.A.; Lewis, H.J.; Jones, C.A.; Nait-Oumesmar, B.; Zhao, C.; et al. Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. J. Cell Biol. 2015, 211, 975–985. [Google Scholar] [CrossRef]
- Eyles, D.W.; Smith, S.; Kinobe, R.; Hewison, M.; McGrath, J.J. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J. Chem. Neuroanat. 2005, 29, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.W.; Selhorst, A.; Lampe, S.G.; Liu, Y.; Yang, Y.; Lovett-Racke, A.E. Neuron-Specific Vitamin D Signaling Attenuates Microglia Activation and CNS Autoimmunity. Front. Neurol. 2020, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Nurminen, V.; Seuter, S.; Carlberg, C. Primary Vitamin D Target Genes of Human Monocytes. Front. Physiol. 2019, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Smolders, J.; Schuurman, K.G.; van Strien, M.E.; Melief, J.; Hendrickx, D.; Hol, E.M.; van Eden, C.; Luchetti, S.; Huitinga, I. Expression of vitamin D receptor and metabolizing enzymes in multiple sclerosis-affected brain tissue. J. Neuropathol. Exp. Neurol. 2013, 72, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinedo, U.; Cuevas, J.A.; Benito-Martin, M.S.; Moreno-Jimenez, L.; Esteban-Garcia, N.; Torre-Fuentes, L.; Matias-Guiu, J.A.; Pytel, V.; Montero, P.; Matias-Guiu, J. Vitamin D increases remyelination by promoting oligodendrocyte lineage differentiation. Brain Behav. 2020, 10, e01498. [Google Scholar] [CrossRef] [PubMed]
- Nystad, A.E.; Wergeland, S.; Aksnes, L.; Myhr, K.M.; Bo, L.; Torkildsen, O. Effect of high-dose 1.25 dihydroxyvitamin D3 on remyelination in the cuprizone model. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2014, 122, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, H.A.; Rasouli, J.; Ciric, B.; Rostami, A.; Zhang, G.X. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp. Mol. Pathol. 2015, 98, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, H.A.; Rasouli, J.; Ciric, B.; Wei, D.; Rostami, A.; Zhang, G.X. 1,25-Dihydroxyvitamin D(3) suppressed experimental autoimmune encephalomyelitis through both immunomodulation and oligodendrocyte maturation. Exp. Mol. Pathol. 2017, 102, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Mowry, E.M.; Krupp, L.B.; Milazzo, M.; Chabas, D.; Strober, J.B.; Belman, A.L.; McDonald, J.C.; Oksenberg, J.R.; Bacchetti, P.; Waubant, E. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann. Neurol. 2010, 67, 618–624. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Maugeri, N.J.; Handunnetthi, L.; Lincoln, M.R.; Orton, S.M.; Dyment, D.A.; Deluca, G.C.; Herrera, B.M.; Chao, M.J.; Sadovnick, A.D.; et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 2009, 5, e1000369. [Google Scholar] [CrossRef]
- Wagner, C.L.; Greer, F.R. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Antel, J.; Bania, M.; Noronha, A.; Neely, S. Defective suppressor cell function mediated by T8+ cell lines from patients with progressive multiple sclerosis. J. Immunol. 1986, 137, 3436–3439. [Google Scholar] [CrossRef] [PubMed]
- Vandenbark, A.A.; Culbertson, N.E.; Bartholomew, R.M.; Huan, J.; Agotsch, M.; LaTocha, D.; Yadav, V.; Mass, M.; Whitham, R.; Lovera, J.; et al. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 2008, 123, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Vandenbark, A.A.; Chou, Y.K.; Whitham, R.; Mass, M.; Buenafe, A.; Liefeld, D.; Kavanagh, D.; Cooper, S.; Hashim, G.A.; Offner, H. Treatment of multiple sclerosis with T-cell receptor peptides: Results of a double-blind pilot trial. Nat. Med. 1996, 2, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Bourdette, D.N.; Edmonds, E.; Smith, C.; Bowen, J.D.; Guttmann, C.R.; Nagy, Z.P.; Simon, J.; Whitham, R.; Lovera, J.; Yadav, V.; et al. A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Mult. Scler. 2005, 11, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Fassas, A.; Anagnostopoulos, A.; Kazis, A.; Kapinas, K.; Sakellari, I.; Kimiskidis, V.; Tsompanakou, A. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: First results of a pilot study. Bone Marrow Transpl. 1997, 20, 631–638. [Google Scholar] [CrossRef]
- Rice, C.M.; Kemp, K.; Wilkins, A.; Scolding, N.J. Cell therapy for multiple sclerosis: An evolving concept with implications for other neurodegenerative diseases. Lancet 2013, 382, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Nabizadeh, F.; Pirahesh, K.; Rafiei, N.; Afrashteh, F.; Ahmadabad, M.A.; Zabeti, A.; Mirmosayyeb, O. Autologous Hematopoietic Stem-Cell Transplantation in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Neurol. Ther. 2022, 11, 1553–1569. [Google Scholar] [CrossRef] [PubMed]
- Burman, J.; Kirgizov, K.; Carlson, K.; Badoglio, M.; Mancardi, G.L.; De Luca, G.; Casanova, B.; Ouyang, J.; Bembeeva, R.; Haas, J.; et al. Autologous hematopoietic stem cell transplantation for pediatric multiple sclerosis: A registry-based study of the Autoimmune Diseases Working Party (ADWP) and Pediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transpl. 2017, 52, 1133–1137. [Google Scholar] [CrossRef]
- Chitnis, T.; Tenembaum, S.; Banwell, B.; Krupp, L.; Pohl, D.; Rostasy, K.; Yeh, E.A.; Bykova, O.; Wassmer, E.; Tardieu, M.; et al. Consensus statement: Evaluation of new and existing therapeutics for pediatric multiple sclerosis. Mult. Scler. 2012, 18, 116–127. [Google Scholar] [CrossRef]
- Goodin, D.S.; Arnason, B.G.; Coyle, P.K.; Frohman, E.M.; Paty, D.W. The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2003, 61, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Krapf, H.; Morrissey, S.P.; Zenker, O.; Zwingers, T.; Gonsette, R.; Hartung, H.P.; Group, M.S. Effect of mitoxantrone on MRI in progressive MS: Results of the MIMS trial. Neurology 2005, 65, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Dolladille, C.; Chrétien, B.; Peyro-Saint-Paul, L.; Alexandre, J.; Dejardin, O.; Fedrizzi, S.; Defer, G. Association Between Disease-Modifying Therapies Prescribed to Persons with Multiple Sclerosis and Cancer: A WHO Pharmacovigilance Database Analysis. Neurotherapeutics 2021, 18, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Hacohen, Y.; Banwell, B.; Ciccarelli, O. What does first-line therapy mean for paediatric multiple sclerosis in the current era? Mult. Scler. 2021, 27, 1970–1976. [Google Scholar] [CrossRef]
- Ghezzi, A.; Amato, M.P.; Edan, G.; Hartung, H.P.; Havrdová, E.K.; Kappos, L.; Montalban, X.; Pozzilli, C.; Sorensen, P.S.; Trojano, M.; et al. The introduction of new medications in pediatric multiple sclerosis: Open issues and challenges. Mult. Scler. 2021, 27, 479–482. [Google Scholar] [CrossRef]
Medication | Proposed Mechanism of Action | Dosing in Pediatric Population | Studies |
---|---|---|---|
Interferon-β | reduction in cytokines inhibition of reactive T-cells induction of anti-inflammatory mediators inhibition of cell trafficking across the BBB 1 | in children > 10 years INF-β-1a: ΙΜ 8 30 mcg once weekly INF-β-1a: sc 9 22 mcg or 44 mcg three times weekly INF-β-1b: sc 8 250 mcg every other day | IM INFβ-1a: Ghezzi et al. [45] sc INFβ-1a: observational studies Pohl et al., REPLAY Study Group [46,47] sc INF-β-1b: observational studies Banwell et al., BETAPAEDIC study [48,49] Peginterferonβ-1a: NCT03958877 Open-label, randomized, active controlled—currently ongoing |
Glatiramer acetate | shifting Th1 cells 2 to Th2 (reg) cells 3 | in children > 10 years sc 20 mg daily or sc 40 mg three times per week | ITEMS, cohort study [50] |
Fingolimod | retaining T-cells in lymph nodes reducing T-cell circulation in CNS 4 | Oral 0.25 mg daily for ≤40 kg, 0.5 mg daily for >40 kg | PARADIGMS [51], double-blind, randomized, active comparator |
Teriflunomide | inhibition DHODH 5 in lymphocytes reducing T- and B-cell circulation in CNS | Oral 7 mg daily for <40 kg, 14 mg daily for ≥40 kg | TERIKIDS [52], double-blind, randomized, placebo-controlled |
Azathioprine | inhibition of DNA synthesis cytotoxic immune cell depletion | Oral 2–3 mg/kg daily | |
Cyclophosphamide | cytotoxic immune cell depletion | Induction regimen of 5 doses provided over 8 days followed by monthly pulse treatments or single induction course of 5 doses over 8 days or monthly without induction 600 to 1000 mg/m2 per dose | Observational, Makhani N et al. [53] |
Dimethyl fumarate | anti-inflammatory properties in microglia, astrocyte neuroprotection | Oral 120 mg BID 10 for 7 days, then 240 mg BID | FOCUS, phase II, single-arm, open-label CONNECTED, follow-up of FOCUS [54,55] |
Rituximab | anti-CD20 monoclonal antibody, B-cell depletion | IV 750 mg/m2 (500–1000 mg) every 6 months, induction with 2 doses separated by 2 weeks | Observational, Salzer J et al., Krysko KM et al. [56,57] |
Daclizumab | anti-CD25 monoclonal antibody inhibition of IL-2 6 reduction in T-cell activation | N/A | N/A |
Alemtuzumab | anti-CD52 monoclonal antibody T-and B-cell depletion | First course: IV 12 mg/daily for 5 days 2nd course (one year later): 12 mg/daily for 3 days | Open-label, non-randomized—currently ongoing |
Ocrelizumab | anti-CD20 monoclonal antibody, B-cell depletion | IV 600 mg every 6 months (1st dose: 2 doses of 300 mg separated by 2 weeks) | Open-label, PK/PD 11 study—currently ongoing |
Natalizumab | anti-α4β1-integrin monoclonal antibody inhibition of T- and B-cell migration into CNS | IV 300 mg every 4 weeks | Open-label, PK/PD study—no results posted Retrospective observational—no results posted |
Mitoxantrone | inhibition of DNA and RNA synthesis inhibition B-, T-cell and macrophage proliferation decrease in TNFa 7 and IL-2 | IV 12–14 mg/m2 every 3 months | Off label |
Ofatumumab | anti-CD20 monoclonal antibody, B-cell depletion | N/A | NEOS, 3-arm double-blind, non-inferiority, randomized—currently ongoing |
Siponimod | retaining T-cells in lymph nodes reducing T-cell circulation in CNS | N/A | NEOS, 3-arm double-blind, non-inferiority, randomized—currently ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavridi, A.; Bompou, M.E.; Redmond, A.; Archontakis-Barakakis, P.; Vavougios, G.D.; Mitsikostas, D.D.; Mavridis, T. Current and Emerging Treatment Options in Pediatric Onset Multiple Sclerosis. Sclerosis 2024, 2, 88-107. https://doi.org/10.3390/sclerosis2020007
Mavridi A, Bompou ME, Redmond A, Archontakis-Barakakis P, Vavougios GD, Mitsikostas DD, Mavridis T. Current and Emerging Treatment Options in Pediatric Onset Multiple Sclerosis. Sclerosis. 2024; 2(2):88-107. https://doi.org/10.3390/sclerosis2020007
Chicago/Turabian StyleMavridi, Artemis, Maria Eleni Bompou, Aine Redmond, Paraschos Archontakis-Barakakis, George D. Vavougios, Dimos D. Mitsikostas, and Theodoros Mavridis. 2024. "Current and Emerging Treatment Options in Pediatric Onset Multiple Sclerosis" Sclerosis 2, no. 2: 88-107. https://doi.org/10.3390/sclerosis2020007
APA StyleMavridi, A., Bompou, M. E., Redmond, A., Archontakis-Barakakis, P., Vavougios, G. D., Mitsikostas, D. D., & Mavridis, T. (2024). Current and Emerging Treatment Options in Pediatric Onset Multiple Sclerosis. Sclerosis, 2(2), 88-107. https://doi.org/10.3390/sclerosis2020007