Astrocytic Receptor Systems of the Basal Ganglia
Abstract
1. Introduction
2. Dopaminergic System
3. Glutamatergic System
3.1. Ionotropic Glutamate Receptors
3.2. Metabotropic Glutamate Receptors
4. GABAergic System
5. Purinergic System
5.1. P1 Receptor System
5.2. P2 Receptor Systems
6. Adrenergic System
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s disease |
| ADP | Adenosine diphosphate |
| AMPA | α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
| AMPH | D-amphetamine |
| ANLS | Astrocyte-neuron lactate shuttle |
| ATP | Adenosine triphosphate |
| BDNF | Brain-derived neurotrophic factor |
| bFGF | Basic fibroblast growth factor |
| cAMP | Cyclic adenosine monophosphate |
| CNS | Central nervous system |
| DA | Dopamine |
| EAAT2 | Excitatory amino acid transporter 2 |
| ERK | Extracellular signal-regulated kinase |
| GABA | Gamma-aminobutyric acid |
| GAD | Generalized anxiety disorder |
| GAT | GABA transporter |
| GLAST | Glutamate-aspartate transporter |
| GLT-1 | Glutamate transporter 1 |
| GP | Globus pallidus |
| GPe | Globus pallidus externus |
| GPi | Globus pallidus internus |
| GPCR | G protein-coupled receptor |
| HD | Huntington’s disease |
| iGluR | Ionotropic glutamate receptor |
| IL-6 | Interleukin-6 |
| iNOS | Inducible nitric oxide synthase |
| KAR | Kainate receptor |
| LTD | Long-term depression |
| LTP | Long-term potentiation |
| MDD | Major depressive disorder |
| mGluR | Metabotropic glutamate receptor |
| MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
| MSA | Multiple system atrophy |
| MSN | Medium spiny neuron |
| NAcc | Nucleus accumbens |
| NKA | Na+/K+-ATPase |
| NMDA | N-methyl-D-aspartate |
| OCD | Obsessive-compulsive disorder |
| OT | Oxytocin |
| PD | Parkinson’s disease |
| PLA | In-situ proximity ligation assay |
| PLC | Phospholipase C |
References
- Macpherson, T.; Hikida, T. Role of Basal Ganglia Neurocircuitry in the Pathology of Psychiatric Disorders. Psychiatry Clin. Neurosci. 2019, 73, 289–301. [Google Scholar] [CrossRef]
- Vitanova, K.S.; Stringer, K.M.; Benitez, D.P.; Brenton, J.; Cummings, D.M. Dementia Associated with Disorders of the Basal Ganglia. J. Neurosci. Res. 2019, 97, 1728–1741. [Google Scholar] [CrossRef]
- Mink, J.W. The Basal Ganglia: Focused Selection and Inhibition of Competing Motor Programs. Prog. Neurobiol. 1996, 50, 381–425. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.J.; Seeberger, L.C.; O’Reilly, R.C. By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism. Science 2004, 306, 1940–1943. [Google Scholar] [CrossRef] [PubMed]
- Nambu, A. A New Dynamic Model of the Cortico-Basal Ganglia Loop. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2004; Volume 143, pp. 461–466. ISBN 978-0-444-51389-2. [Google Scholar]
- Ashby, F.G.; Ennis, J.M.; Spiering, B.J. A Neurobiological Theory of Automaticity in Perceptual Categorization. Psychol. Rev. 2007, 114, 632–656. [Google Scholar] [CrossRef]
- Schroll, H.; Vitay, J.; Hamker, F.H. Working Memory and Response Selection: A Computational Account of Interactions among Cortico-Basalganglio-Thalamic Loops. Neural Netw. 2012, 26, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Trapp, S.; Schroll, H.; Hamker, F.H. Open and Closed Loops: A Computational Approach to Attention and Consciousness. Adv. Cogn. Psychol. 2012, 8, 1–8. [Google Scholar] [CrossRef]
- Packard, M.G.; Knowlton, B.J. Learning and Memory Functions of the Basal Ganglia. Annu. Rev. Neurosci. 2002, 25, 563–593. [Google Scholar] [CrossRef]
- Schroll, H.; Hamker, F.H. Computational Models of Basal-Ganglia Pathway Functions: Focus on Functional Neuroanatomy. Front. Syst. Neurosci. 2013, 7, 122. [Google Scholar] [CrossRef]
- Nambu, A.; Tokuno, H.; Hamada, I.; Kita, H.; Imanishi, M.; Akazawa, T.; Ikeuchi, Y.; Hasegawa, N. Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey. J. Neurophysiol. 2000, 84, 289–300. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Yi, L.X.; Wang, D.Q.; Lim, T.M.; Tan, E.K. Role of Dopamine in the Pathophysiology of Parkinson’s Disease. Transl. Neurodegener. 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M.E. Huntington’s Disease and the Striatal Medium Spiny Neuron: Cell-Autonomous and Non-Cell-Autonomous Mechanisms of Disease. Neurotherapeutics 2012, 9, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Ubhi, K.; Low, P.; Masliah, E. Multiple System Atrophy: A Clinical and Neuropathological Perspective. Trends Neurosci. 2011, 34, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W.; Rademakers, R.; Hutton, M.L. Progressive Supranuclear Palsy: Pathology and Genetics. Brain Pathol. 2007, 17, 74–82. [Google Scholar] [CrossRef]
- Whiteside, S.P.; Port, J.D.; Abramowitz, J.S. A Meta–Analysis of Functional Neuroimaging in Obsessive–Compulsive Disorder. Psychiatry Res. Neuroimaging 2004, 132, 69–79. [Google Scholar] [CrossRef]
- Maia, T.V.; Cooney, R.E.; Peterson, B.S. The Neural Bases of Obsessive–Compulsive Disorder in Children and Adults. Dev. Psychopathol. 2008, 20, 1251–1283. [Google Scholar] [CrossRef]
- Hommer, D.W.; Bjork, J.M.; Gilman, J.M. Imaging Brain Response to Reward in Addictive Disorders. Ann. N. Y. Acad. Sci. 2011, 1216, 50–61. [Google Scholar] [CrossRef]
- Diekhof, E.K.; Falkai, P.; Gruber, O. Functional Neuroimaging of Reward Processing and Decision-Making: A Review of Aberrant Motivational and Affective Processing in Addiction and Mood Disorders. Brain Res. Rev. 2008, 59, 164–184. [Google Scholar] [CrossRef]
- Leyton, M.; Vezina, P. Striatal Ups and Downs: Their Roles in Vulnerability to Addictions in Humans. Neurosci. Biobehav. Rev. 2013, 37, 1999–2014. [Google Scholar] [CrossRef]
- Hokama, H.; Shenton, M.E.; Nestor, P.G.; Kikinis, R.; Levitt, J.J.; Metcalf, D.; Wible, C.G.; O’Donnella, B.F.; Jolesz, F.A.; McCarley, R.W. Caudate, Putamen, and Globus Pallidus Volume in Schizophrenia: A Quantitative MRI Study. Psychiatry Res. Neuroimaging 1995, 61, 209–229. [Google Scholar] [CrossRef]
- Womer, F.Y.; Wang, L.; Alpert, K.I.; Smith, M.J.; Csernansky, J.G.; Barch, D.M.; Mamah, D. Basal Ganglia and Thalamic Morphology in Schizophrenia and Bipolar Disorder. Psychiatry Res. Neuroimaging 2014, 223, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Cannon, D.M.; Klaver, J.M.; Peck, S.A.; Rallis-Voak, D.; Erickson, K.; Drevets, W.C. Dopamine Type-1 Receptor Binding in Major Depressive Disorder Assessed Using Positron Emission Tomography and [11C]NNC-112. Neuropsychopharmacology 2009, 34, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.-T.; Tsai, H.C.; Chi, M.H.; Chang, W.H.; Chen, K.C.; Lee, I.H.; Chen, P.S.; Yao, W.J.; Chiu, N.T.; Yang, Y.K. Lower Availability of Striatal Dopamine Transporter in Generalized Anxiety Disorder: A Preliminary Two-Ligand SPECT Study. Int. Clin. Psychopharmacol. 2015, 30, 175–178. [Google Scholar] [CrossRef]
- Meyer, J.H.; McNeely, H.E.; Sagrati, S.; Boovariwala, A.; Martin, K.; Verhoeff, N.P.L.G.; Wilson, A.A.; Houle, S. Elevated Putamen D2 Receptor Binding Potential in Major Depression with Motor Retardation: An [11C]Raclopride Positron Emission Tomography Study. Am. J. Psychiatry 2006, 163, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Barres, B.A. The Mystery and Magic of Glia: A Perspective on Their Roles in Health and Disease. Neuron 2008, 60, 430–440. [Google Scholar] [CrossRef]
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite Synapses: Glia, the Unacknowledged Partner. Trends Neurosci. 1999, 22, 208–215. [Google Scholar] [CrossRef]
- Min, R.; Nevian, T. Astrocyte Signaling Controls Spike Timing–Dependent Depression at Neocortical Synapses. Nat. Neurosci. 2012, 15, 746–753. [Google Scholar] [CrossRef]
- Miyazaki, I.; Asanuma, M.; Diaz-Corrales, F.J.; Miyoshi, K.; Ogawa, N. Direct Evidence for Expression of Dopamine Receptors in Astrocytes from Basal Ganglia. Brain Res. 2004, 1029, 120–123. [Google Scholar] [CrossRef]
- Centemeri, C.; Bolego, C.; Abbracchio, M.P.; Cattabeni, F.; Puglisi, L.; Burnstock, G.; Nicosia, S. Characterization of the Ca2+ Responses Evoked by ATP and Other Nucleotides in Mammalian Brain Astrocytes. Br. J. Pharmacol. 1997, 121, 1700–1706. [Google Scholar] [CrossRef]
- Franke, H.; Krügel, U.; Illes, P. P2 Receptor-Mediated Proliferative Effects on Astrocytes in Vivo. Glia 1999, 28, 190–200. [Google Scholar] [CrossRef]
- Franke, H.; Krügel, U.; Schmidt, R.; Grosche, J.; Reichenbach, A.; Illes, P. P2 Receptor-Types Involved in Astrogliosis in Vivo. Br. J. Pharmacol. 2001, 134, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Zorec, R.; Araque, A.; Carmignoto, G.; Haydon, P.G.; Verkhratsky, A.; Parpura, V. Astroglial Excitability and Gliotransmission: An Appraisal of Ca2+ as a Signalling Route. ASN Neuro 2012, 4, AN20110061. [Google Scholar] [CrossRef] [PubMed]
- Araque, A.; Carmignoto, G.; Haydon, P.G.; Oliet, S.H.R.; Robitaille, R.; Volterra, A. Gliotransmitters Travel in Time and Space. Neuron 2014, 81, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Di Castro, M.A.; Chuquet, J.; Liaudet, N.; Bhaukaurally, K.; Santello, M.; Bouvier, D.; Tiret, P.; Volterra, A. Local Ca2+ Detection and Modulation of Synaptic Release by Astrocytes. Nat. Neurosci. 2011, 14, 1276–1284. [Google Scholar] [CrossRef]
- Panatier, A.; Vallée, J.; Haber, M.; Murai, K.K.; Lacaille, J.-C.; Robitaille, R. Astrocytes Are Endogenous Regulators of Basal Transmission at Central Synapses. Cell 2011, 146, 785–798. [Google Scholar] [CrossRef]
- Beierlein, M.; Regehr, W.G. Brief Bursts of Parallel Fiber Activity Trigger Calcium Signals in Bergmann Glia. J. Neurosci. 2006, 26, 6958–6967. [Google Scholar] [CrossRef]
- Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains. J. Neurosci. 2002, 22, 183–192. [Google Scholar] [CrossRef]
- Cornell-Bell, A.H.; Finkbeiner, S.M.; Cooper, M.S.; Smith, S.J. Glutamate Induces Calcium Waves in Cultured Astrocytes: Long-Range Glial Signaling. Science 1990, 247, 470–473. [Google Scholar] [CrossRef]
- Charles, A.C.; Merrill, J.E.; Dirksen, E.R.; Sandersont, M.J. Intercellular Signaling in Glial Cells: Calcium Waves and Oscillations in Response to Mechanical Stimulation and Glutamate. Neuron 1991, 6, 983–992. [Google Scholar] [CrossRef]
- Pascual, O.; Casper, K.B.; Kubera, C.; Zhang, J.; Revilla-Sanchez, R.; Sul, J.-Y.; Takano, H.; Moss, S.J.; McCarthy, K.; Haydon, P.G. Astrocytic Purinergic Signaling Coordinates Synaptic Networks. Science 2005, 310, 113–116. [Google Scholar] [CrossRef]
- Serrano, A.; Haddjeri, N.; Lacaille, J.-C.; Robitaille, R. GABAergic Network Activation of Glial Cells Underlies Hippocampal Heterosynaptic Depression. J. Neurosci. 2006, 26, 5370–5382. [Google Scholar] [CrossRef] [PubMed]
- Covelo, A.; Araque, A. Lateral Regulation of Synaptic Transmission by Astrocytes. Neuroscience 2016, 323, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Covelo, A.; Araque, A. Neuronal Activity Determines Distinct Gliotransmitter Release from a Single Astrocyte. eLife 2018, 7, e32237. [Google Scholar] [CrossRef] [PubMed]
- Attwell, D.; Buchan, A.M.; Charpak, S.; Lauritzen, M.; MacVicar, B.A.; Newman, E.A. Glial and Neuronal Control of Brain Blood Flow. Nature 2010, 468, 232–243. [Google Scholar] [CrossRef]
- Brown, A.M.; Ransom, B.R. Astrocyte Glycogen and Brain Energy Metabolism. Glia 2007, 55, 1263–1271. [Google Scholar] [CrossRef]
- Deitmer, J.W. pH Regulation and Acid/Base-Mediated Transport in Glial Cells. In Glial ⇔ Neuronal Signaling; Hatton, G.I., Parpura, V., Eds.; Springer: Boston, MA, USA, 2004; pp. 263–277. ISBN 978-1-4757-1069-4. [Google Scholar]
- Simard, M.; Nedergaard, M. The Neurobiology of Glia in the Context of Water and Ion Homeostasis. Neuroscience 2004, 129, 877–896. [Google Scholar] [CrossRef]
- Guo, Q.; Gobbo, D.; Zhao, N.; Zhang, H.; Awuku, N.-O.; Liu, Q.; Fang, L.-P.; Gampfer, T.M.; Meyer, M.R.; Zhao, R.; et al. Adenosine Triggers Early Astrocyte Reactivity That Provokes Microglial Responses and Drives the Pathogenesis of Sepsis-Associated Encephalopathy in Mice. Nat. Commun. 2024, 15, 6340. [Google Scholar] [CrossRef]
- Notter, T. Astrocytes in Schizophrenia. Brain Neurosci. Adv. 2021, 5, 23982128211009148. [Google Scholar] [CrossRef]
- Ben Haim, L.; Carrillo-de Sauvage, M.-A.; Ceyzériat, K.; Escartin, C. Elusive Roles for Reactive Astrocytes in Neurodegenerative Diseases. Front. Cell. Neurosci. 2015, 9, 278. [Google Scholar] [CrossRef]
- Brenner, M.; Johnson, A.B.; Boespflug-Tanguy, O.; Rodriguez, D.; Goldman, J.E.; Messing, A. Mutations in GFAP, Encoding Glial Fibrillary Acidic Protein, Are Associated with Alexander Disease. Nat. Genet. 2001, 27, 117–120. [Google Scholar] [CrossRef]
- Li, R.; Johnson, A.B.; Salomons, G.; Goldman, J.E.; Naidu, S.; Quinlan, R.; Cree, B.; Ruyle, S.Z.; Banwell, B.; D’Hooghe, M.; et al. Glial Fibrillary Acidic Protein Mutations in Infantile, Juvenile, and Adult Forms of Alexander Disease. Ann. Neurol. 2005, 57, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Reyes, R.C.; Gottipati, M.K.; Lewis, K.; Lesort, M.; Parpura, V.; Gray, M. Enhanced Ca2+-Dependent Glutamate Release from Astrocytes of the BACHD Huntington’s Disease Mouse Model. Neurobiol. Dis. 2013, 58, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Wójtowicz, A.M.; Dvorzhak, A.; Semtner, M.; Grantyn, R. Reduced Tonic Inhibition in Striatal Output Neurons from Huntington Mice Due to Loss of Astrocytic GABA Release through GAT-3. Front. Neural Circuits 2013, 7, 188. [Google Scholar] [CrossRef]
- Lee, H.-J.; Suk, J.-E.; Patrick, C.; Bae, E.-J.; Cho, J.-H.; Rho, S.; Hwang, D.; Masliah, E.; Lee, S.-J. Direct Transfer of α-Synuclein from Neuron to Astroglia Causes Inflammatory Responses in Synucleinopathies. J. Biol. Chem. 2010, 285, 9262–9272. [Google Scholar] [CrossRef] [PubMed]
- Bonifati, V.; Rizzu, P.; Van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.J.; Squitieri, F.; Ibanez, P.; Joosse, M.; et al. Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 2003, 299, 256–259. [Google Scholar] [CrossRef]
- Mullett, S.J.; Hinkle, D.A. DJ-1 Knock-down in Astrocytes Impairs Astrocyte-Mediated Neuroprotection against Rotenone. Neurobiol. Dis. 2009, 33, 28–36. [Google Scholar] [CrossRef]
- Wang, Q.; Jie, W.; Liu, J.; Yang, J.; Gao, T. An Astroglial Basis of Major Depressive Disorder? An Overview. Glia 2017, 65, 1227–1250. [Google Scholar] [CrossRef]
- Bowley, M.P.; Drevets, W.C.; Öngür, D.; Price, J.L. Low Glial Numbers in the Amygdala in Major Depressive Disorder. Biol. Psychiatry 2002, 52, 404–412. [Google Scholar] [CrossRef]
- Peng, L.; Huang, J. Astrocytic 5-HT2B Receptor as in Vitro and in Vivo Target of SSRIs. Recent Patents CNS Drug Discov. 2012, 7, 243–253. [Google Scholar] [CrossRef]
- Gonzalez, L.; Bezzi, P. Astrocyte Dysfunctions in Obsessive Compulsive Disorder: Rethinking Neurobiology and Therapeutic Targets. J. Neurochem. 2025, 169, e70092. [Google Scholar] [CrossRef]
- Nagai, J.; Yu, X.; Papouin, T.; Cheong, E.; Freeman, M.R.; Monk, K.R.; Hastings, M.H.; Haydon, P.G.; Rowitch, D.; Shaham, S.; et al. Behaviorally Consequential Astrocytic Regulation of Neural Circuits. Neuron 2021, 109, 576–596. [Google Scholar] [CrossRef]
- Mederos, S.; Perea, G. GABAergic-Astrocyte Signaling: A Refinement of Inhibitory Brain Networks. Glia 2019, 67, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.S.; Jami-Alahmadi, Y.; Chacon, J.; Moye, S.L.; Diaz-Castro, B.; Wohlschlegel, J.A.; Khakh, B.S. Astrocyte–Neuron Subproteomes and Obsessive–Compulsive Disorder Mechanisms. Nature 2023, 616, 764–773. [Google Scholar] [CrossRef]
- Moritz, A.E.; Madaras, N.S.; Rankin, M.L.; Inbody, L.R.; Sibley, D.R. Delineation of G Protein-Coupled Receptor Kinase Phosphorylation Sites within the D1 Dopamine Receptor and Their Roles in Modulating β-Arrestin Binding and Activation. Int. J. Mol. Sci. 2023, 24, 6599. [Google Scholar] [CrossRef]
- Beaulieu, J.; Espinoza, S.; Gainetdinov, R.R. Dopamine Receptors—IUPHAR R Eview 13. Br. J. Pharmacol. 2015, 172, 1–23. [Google Scholar] [CrossRef]
- Mastrogiacomo, R.; Trigilio, G.; Devroye, C.; Dautan, D.; Ferretti, V.; Losi, G.; Caffino, L.; Orso, G.; Marotta, R.; Maltese, F.; et al. Dysbindin-1A Modulation of Astrocytic Dopamine and Basal Ganglia Dependent Behaviors Relevant to Schizophrenia. Mol. Psychiatry 2022, 27, 4201–4217. [Google Scholar] [CrossRef] [PubMed]
- Emmi, A.; Antonini, A.; Sandre, M.; Baldo, A.; Contran, M.; Macchi, V.; Guidolin, D.; Porzionato, A.; De Caro, R. Topography and Distribution of Adenosine A2A and Dopamine D2 Receptors in the Human Subthalamic Nucleus. Front. Neurosci. 2022, 16, 945574. [Google Scholar] [CrossRef]
- Nagatomo, K.; Suga, S.; Saitoh, M.; Kogawa, M.; Kobayashi, K.; Yamamoto, Y.; Yamada, K. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse. Front. Neuroanat. 2017, 11, 3. [Google Scholar] [CrossRef]
- Reuss, B.; Leung, D.S.Y.; Ohlemeyer, C.; Kettenmann, H.; Unsicker, K. Regionally Distinct Regulation of Astroglial Neurotransmitter Receptors by Fibroblast Growth Factor-2. Mol. Cell. Neurosci. 2000, 16, 42–58. [Google Scholar] [CrossRef]
- Zanassi, P.; Paolillo, M.; Montecucco, A.; Avvedimento, E.V.; Schinelli, S. Pharmacological and Molecular Evidence for Dopamine D1 Receptor Expression by Striatal Astrocytes in Culture. J. Neurosci. Res. 1999, 58, 544–552. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, S.; Tang, M.; Zhang, X.; Zhou, Z.; Yin, Y.; Zhou, Q.; Huang, Y.; Liu, Y.; Wawrousek, E.; et al. Suppression of Neuroinflammation by Astrocytic Dopamine D2 Receptors via αB-Crystallin. Nature 2013, 494, 90–94. [Google Scholar] [CrossRef]
- Montoya, A.; Elgueta, D.; Campos, J.; Chovar, O.; Falcón, P.; Matus, S.; Alfaro, I.; Bono, M.R.; Pacheco, R. Dopamine Receptor D3 Signalling in Astrocytes Promotes Neuroinflammation. J. Neuroinflammation 2019, 16, 258. [Google Scholar] [CrossRef] [PubMed]
- Elgueta, D.; Aymerich, M.S.; Contreras, F.; Montoya, A.; Celorrio, M.; Rojo-Bustamante, E.; Riquelme, E.; González, H.; Vásquez, M.; Franco, R.; et al. Pharmacologic Antagonism of Dopamine Receptor D3 Attenuates Neurodegeneration and Motor Impairment in a Mouse Model of Parkinson’s Disease. Neuropharmacology 2017, 113, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Svingos, A.L.; Periasamy, S.; Pickel, V.M. Dopamine D4 Receptors Are Strategically Localized for Primary Involvement in the Presynaptic Effects of Dopamine in the Rat Nucleus Accumbens Shell. Ann. N. Y. Acad. Sci. 1999, 877, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Brito, V.; Beyer, C.; Küppers, E. BDNF-dependent Stimulation of Dopamine D5 Receptor Expression in Developing Striatal Astrocytes Involves PI3-kinase Signaling. Glia 2004, 46, 284–295. [Google Scholar] [CrossRef]
- Cervetto, C.; Venturini, A.; Passalacqua, M.; Guidolin, D.; Genedani, S.; Fuxe, K.; Borroto-Esquela, D.O.; Cortelli, P.; Woods, A.; Maura, G.; et al. A2A-D2 Receptor–Receptor Interaction Modulates Gliotransmitter Release from Striatal Astrocyte Processes. J. Neurochem. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Cervetto, C.; Venturini, A.; Guidolin, D.; Maura, G.; Passalacqua, M.; Tacchetti, C.; Cortelli, P.; Genedani, S.; Candiani, S.; Ramoino, P.; et al. Homocysteine and A2A-D2 Receptor-Receptor Interaction at Striatal Astrocyte Processes. J. Mol. Neurosci. 2018, 65, 456–466. [Google Scholar] [CrossRef]
- Pelassa, S.; Guidolin, D.; Venturini, A.; Averna, M.; Frumento, G.; Campanini, L.; Bernardi, R.; Cortelli, P.; Calandra Buonaura, G.; Maura, G.; et al. A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence. Int. J. Mol. Sci. 2019, 20, 2457. [Google Scholar] [CrossRef]
- Amato, S.; Averna, M.; Guidolin, D.; Ceccoli, C.; Gatta, E.; Candiani, S.; Pedrazzi, M.; Capraro, M.; Maura, G.; Agnati, L.F.; et al. Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int. J. Mol. Sci. 2023, 24, 4677. [Google Scholar] [CrossRef]
- Amato, S.; Averna, M.; Farsetti, E.; Guidolin, D.; Pedrazzi, M.; Gatta, E.; Candiani, S.; Maura, G.; Agnati, L.F.; Cervetto, C.; et al. Control of Dopamine Signal in High-Order Receptor Complex on Striatal Astrocytes. Int. J. Mol. Sci. 2024, 25, 8610. [Google Scholar] [CrossRef]
- Martín, R.; Bajo-Grañeras, R.; Moratalla, R.; Perea, G.; Araque, A. Circuit-Specific Signaling in Astrocyte-Neuron Networks in Basal Ganglia Pathways. Science 2015, 349, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Corkrum, M.; Covelo, A.; Lines, J.; Bellocchio, L.; Pisansky, M.; Loke, K.; Quintana, R.; Rothwell, P.E.; Lujan, R.; Marsicano, G.; et al. Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity. Neuron 2020, 105, 1036–1047.e5. [Google Scholar] [CrossRef] [PubMed]
- Adermark, L.; Lagström, O.; Loftén, A.; Licheri, V.; Havenäng, A.; Loi, E.A.; Stomberg, R.; Söderpalm, B.; Domi, A.; Ericson, M. Astrocytes Modulate Extracellular Neurotransmitter Levels and Excitatory Neurotransmission in Dorsolateral Striatum via Dopamine D2 Receptor Signaling. Neuropsychopharmacology 2022, 47, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Ohnuma, K.; Murakami, A.; Takasawa, N.; Kobayashi, S.; Dang, N.H.; Schlossman, S.F.; Morimoto, C. CD26-Mediated Signaling for T Cell Activation Occurs in Lipid Rafts through Its Association with CD45RO. Proc. Natl. Acad. Sci. USA 2001, 98, 12138–12143. [Google Scholar] [CrossRef]
- Beier, E.E.; Neal, M.; Alam, G.; Edler, M.; Wu, L.-J.; Richardson, J.R. Alternative Microglial Activation Is Associated with Cessation of Progressive Dopamine Neuron Loss in Mice Systemically Administered Lipopolysaccharide. Neurobiol. Dis. 2017, 108, 115–127. [Google Scholar] [CrossRef]
- Ohta, K.; Kuno, S.; Inoue, S.; Ikeda, E.; Fujinami, A.; Ohta, M. The Effect of Dopamine Agonists: The Expression of GDNF, NGF, and BDNF in Cultured Mouse Astrocytes. J. Neurol. Sci. 2010, 291, 12–16. [Google Scholar] [CrossRef]
- Cervetto, C.; Maura, G.; Guidolin, D.; Amato, S.; Ceccoli, C.; Agnati, L.F.; Marcoli, M. Striatal Astrocytic A2A-D2 Receptor-Receptor Interactions and Their Role in Neuropsychiatric Disorders. Neuropharmacology 2023, 237, 109636. [Google Scholar] [CrossRef]
- Guidolin, D.; Marcoli, M.; Tortorella, C.; Maura, G.; Agnati, L.F. Adenosine A2A-Dopamine D2 Receptor-Receptor Interaction in Neurons and Astrocytes: Evidence and Perspectives. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2020; Volume 169, pp. 247–277. ISBN 978-0-12-817929-1. [Google Scholar]
- Palygin, O.; Lalo, U.; Pankratov, Y. Distinct Pharmacological and Functional Properties of NMDA Receptors in Mouse Cortical Astrocytes. Br. J. Pharmacol. 2011, 163, 1755–1766. [Google Scholar] [CrossRef]
- Henneberger, C.; Bard, L.; King, C.; Jennings, A.; Rusakov, D.A. NMDA Receptor Activation: Two Targets for Two Co-Agonists. Neurochem. Res. 2013, 38, 1156–1162. [Google Scholar] [CrossRef]
- Höft, S.; Griemsmann, S.; Seifert, G.; Steinhäuser, C. Heterogeneity in Expression of Functional Ionotropic Glutamate and GABA Receptors in Astrocytes across Brain Regions: Insights from the Thalamus. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130602. [Google Scholar] [CrossRef]
- Sun, D.; Tan, Z.-B.; Sun, X.-D.; Liu, Z.-P.; Chen, W.-B.; Milibari, L.; Ren, X.; Yao, L.-L.; Lee, D.; Shen, C.; et al. Hippocampal Astrocytic Neogenin Regulating Glutamate Uptake, a Critical Pathway for Preventing Epileptic Response. Proc. Natl. Acad. Sci. USA 2021, 118, e2022921118. [Google Scholar] [CrossRef] [PubMed]
- Devaraju, P.; Sun, M.-Y.; Myers, T.L.; Lauderdale, K.; Fiacco, T.A. Astrocytic Group I mGluR-Dependent Potentiation of Astrocytic Glutamate and Potassium Uptake. J. Neurophysiol. 2013, 109, 2404–2414. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, V.L.; Chang, S.-Y.; Hitti, F.L.; Roberts, D.W.; Leiter, J.C.; Jovanovic, S.; Lee, K.H. Deep Brain Stimulation Results in Local Glutamate and Adenosine Release. Neurosurgery 2010, 67, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, A.L.; Robinson, M.B. The Role of Glutamate Transporters in Neurodegenerative Diseases and Potential Opportunities for Intervention. Neurochem. Int. 2007, 51, 333–355. [Google Scholar] [CrossRef]
- Jin, X.-T.; Smith, Y. Activation of Presynaptic Kainate Receptors Suppresses GABAergic Synaptic Transmission in the Rat Globus Pallidus. Neuroscience 2007, 149, 338–349. [Google Scholar] [CrossRef]
- Cavaccini, A.; Durkee, C.; Kofuji, P.; Tonini, R.; Araque, A. Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway. J. Neurosci. 2020, 40, 5757–5768. [Google Scholar] [CrossRef]
- Testa, C.M.; Standaert, D.G.; Landwehrmeyer, G.B.; Penney, J.B.; Young, A.B. Differential Expression of mGluR5 Metabotropic Glutamate Receptor mRNA by Rat Striatal Neurons. J. Comp. Neurol. 1995, 354, 241–252. [Google Scholar] [CrossRef]
- Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection? Front. Mol. Neurosci. 2018, 11, 414. [Google Scholar] [CrossRef]
- D’Antoni, S.; Berretta, A.; Bonaccorso, C.M.; Bruno, V.; Aronica, E.; Nicoletti, F.; Catania, M.V. Metabotropic Glutamate Receptors in Glial Cells. Neurochem. Res. 2008, 33, 2436–2443. [Google Scholar] [CrossRef]
- Durand, D.; Carniglia, L.; Caruso, C.; Lasaga, M. mGlu3 Receptor and Astrocytes: Partners in Neuroprotection. Neuropharmacology 2013, 66, 1–11. [Google Scholar] [CrossRef]
- Di Menna, L.; Alborghetti, M.; De Bartolo, M.I.; Borro, M.; Gentile, G.; Zinni, M.; Bologna, M.; Cutrona, C.; D’Errico, G.; Imbriglio, T.; et al. Preclinical and Clinical Study on Type 3 Metabotropic Glutamate Receptors in Parkinson’s Disease. NPJ Park. Dis. 2025, 11, 9. [Google Scholar] [CrossRef]
- Matute, C.; Domercq, M.; Sánchez-Gómez, M. Glutamate-mediated Glial Injury: Mechanisms and Clinical Importance. Glia 2006, 53, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Awad, H.; Hubert, G.W.; Smith, Y.; Levey, A.I.; Conn, P.J. Activation of Metabotropic Glutamate Receptor 5 Has Direct Excitatory Effects and Potentiates NMDA Receptor Currents in Neurons of the Subthalamic Nucleus. J. Neurosci. 2000, 20, 7871–7879. [Google Scholar] [CrossRef] [PubMed]
- Corti, C.; Aldegheri, L.; Somogyi, P.; Ferraguti, F. Distribution and Synaptic Localisation of the Metabotropic Glutamate Receptor 4 (mGluR4) in the Rodent CNS. Neuroscience 2002, 110, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Johnson, S.W. Group II Metabotropic Glutamate Receptor Modulation of Excitatory Transmission in Rat Subthalamic Nucleus. J. Physiol. 2003, 553, 489–496. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Chvátal, A. NMDA Receptors in Astrocytes. Neurochem. Res. 2020, 45, 122–133. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Kirchhoff, F. NMDA Receptors in Glia. Neuroscientist 2007, 13, 28–37. [Google Scholar] [CrossRef]
- Bergles, D.E.; Jahr, C.E. Synaptic Activation of Glutamate Transporters in Hippocampal Astrocytes. Neuron 1997, 19, 1297–1308. [Google Scholar] [CrossRef]
- Lehre, K.P.; Danbolt, N.C. The Number of Glutamate Transporter Subtype Molecules at Glutamatergic Synapses: Chemical and Stereological Quantification in Young Adult Rat Brain. J. Neurosci. 1998, 18, 8751–8757. [Google Scholar] [CrossRef]
- Pannasch, U.; Vargová, L.; Reingruber, J.; Ezan, P.; Holcman, D.; Giaume, C.; Syková, E.; Rouach, N. Astroglial Networks Scale Synaptic Activity and Plasticity. Proc. Natl. Acad. Sci. USA 2011, 108, 8467–8472. [Google Scholar] [CrossRef]
- Schiffmann, S.N.; Fisone, G.; Moresco, R.; Cunha, R.A.; Ferré, S. Adenosine A2A Receptors and Basal Ganglia Physiology. Prog. Neurobiol. 2007, 83, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.; Zhou, M.; Steinhäuser, C. Analysis of AMPA Receptor Properties During Postnatal Development of Mouse Hippocampal Astrocytes. J. Neurophysiol. 1997, 78, 2916–2923. [Google Scholar] [CrossRef] [PubMed]
- Lalo, U.; Palygin, O.; Rasooli-Nejad, S.; Andrew, J.; Haydon, P.G.; Pankratov, Y. Exocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex. PLoS Biol. 2014, 12, e1001747. [Google Scholar] [CrossRef] [PubMed]
- Pannasch, U.; Dossi, E.; Ezan, P.; Rouach, N. Astroglial Cx30 Sustains Neuronal Population Bursts Independently of Gap-junction Mediated Biochemical Coupling. Glia 2019, 67, 1104–1112. [Google Scholar] [CrossRef]
- Andersen, J.V. The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances. J. Neurochem. 2025, 169, e70029. [Google Scholar] [CrossRef]
- Pellerin, L.; Magistretti, P.J. Glutamate Uptake into Astrocytes Stimulates Aerobic Glycolysis: A Mechanism Coupling Neuronal Activity to Glucose Utilization. Proc. Natl. Acad. Sci. USA 1994, 91, 10625–10629. [Google Scholar] [CrossRef]
- Lopes, C.R.; Cunha, R.A.; Agostinho, P. Astrocytes and Adenosine A2A Receptors: Active Players in Alzheimer’s Disease. Front. Neurosci. 2021, 15, 666710. [Google Scholar] [CrossRef]
- Zhai, S. Emerging Role of Astrocytes in Striatal Synaptic Plasticity. J. Neurosci. 2021, 41, 2088–2090. [Google Scholar] [CrossRef]
- LERMA, J. Kainate Receptor Physiology. Curr. Opin. Pharmacol. 2006, 6, 89–97. [Google Scholar] [CrossRef]
- Jonas, P. Differences in Ca2+ Permeability of AMPA-Type Glutamate Receptor Channels in Neocortical Neurons Caused by Differential GluR-B Subunit Expression. Neuron 1994, 12, 1281–1289. [Google Scholar] [CrossRef]
- Partin, K.M.; Patneau, D.K.; Winters, C.A.; Mayer, M.L.; Buonanno, A. Selective Modulation of Desensitization at AMPA versus Kainate Receptors by Cyclothiazide and Concanavalin A. Neuron 1993, 11, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, P.; Mulle, C. Kainate Receptors. Cell Tissue Res. 2006, 326, 457–482. [Google Scholar] [CrossRef] [PubMed]
- Karki, P.; Smith, K.; Johnson, J.; Aschner, M.; Lee, E.Y. Genetic Dys-Regulation of Astrocytic Glutamate Transporter EAAT2 and Its Implications in Neurological Disorders and Manganese Toxicity. Neurochem. Res. 2015, 40, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Lutgen, V.; Narasipura, S.D.; Sharma, A.; Min, S.; Al-Harthi, L. β-Catenin Signaling Positively Regulates Glutamate Uptake and Metabolism in Astrocytes. J. Neuroinflammation 2016, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Barros, L.F. The Astrocyte: Powerhouse and Recycling Center. Cold Spring Harb. Perspect. Biol. 2015, 7, a020396. [Google Scholar] [CrossRef]
- Niswender, C.M.; Conn, P.J. Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 295–322. [Google Scholar] [CrossRef]
- Sun, W.; McConnell, E.; Pare, J.-F.; Xu, Q.; Chen, M.; Peng, W.; Lovatt, D.; Han, X.; Smith, Y.; Nedergaard, M. Glutamate-Dependent Neuroglial Calcium Signaling Differs Between Young and Adult Brain. Science 2013, 339, 197–200. [Google Scholar] [CrossRef]
- Balázs, R.; Miller, S.; Romano, C.; De Vries, A.; Chun, Y.; Cotman, C.W. Metabotropic Glutamate Receptor mGluR5 in Astrocytes: Pharmacological Properties and Agonist Regulation. J. Neurochem. 1997, 69, 151–163. [Google Scholar] [CrossRef]
- Higashimori, H.; Morel, L.; Huth, J.; Lindemann, L.; Dulla, C.; Taylor, A.; Freeman, M.; Yang, Y. Astroglial FMRP-Dependent Translational down-Regulation of mGluR5 Underlies Glutamate Transporter GLT1 Dysregulation in the Fragile X Mouse. Hum. Mol. Genet. 2013, 22, 2041–2054. [Google Scholar] [CrossRef]
- Yao, H.; Ding, J.; Zhou, F.; Wang, F.; Hu, L.; Sun, T.; Hu, G. Enhancement of Glutamate Uptake Mediates the Neuroprotection Exerted by Activating Group II or III Metabotropic Glutamate Receptors on Astrocytes. J. Neurochem. 2005, 92, 948–961. [Google Scholar] [CrossRef]
- Fraser, D.D.; Mudrick-Donnon, L.A.; Macvicar, B.A. Astrocytic GABA Receptors. Glia 1994, 11, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; McGeer, E.G.; McGeer, P.L. Mechanisms of GABA Release from Human Astrocytes. Glia 2011, 59, 1600–1611. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.-E.; Jo, S.; Woo, J.; Lee, J.-H.; Kim, T.; Kim, D.; Lee, C.J. The Amount of Astrocytic GABA Positively Correlates with the Degree of Tonic Inhibition in Hippocampal CA1 and Cerebellum. Mol. Brain 2011, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Brickley, S.G.; Mody, I. Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease. Neuron 2012, 73, 23–34. [Google Scholar] [CrossRef]
- Charles, K.J.; Deuchars, J.; Davies, C.H.; Pangalos, M.N. GABAB Receptor Subunit Expression in Glia. Mol. Cell. Neurosci. 2003, 24, 214–223. [Google Scholar] [CrossRef]
- Liu, J.; Feng, X.; Wang, Y.; Xia, X.; Zheng, J.C. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front. Cell. Neurosci. 2022, 16, 892497. [Google Scholar] [CrossRef]
- Nilsson, M.; Eriksson, P.S.; Rönnbäck, L.; Hansson, E. GABA Induces Ca2+ Transients in Astrocytes. Neuroscience 1993, 54, 605–614. [Google Scholar] [CrossRef]
- Charles, K.J.; Calver, A.R.; Jourdain, S.; Pangalos, M.N. Distribution of a GABAB-like Receptor Protein in the Rat Central Nervous System. Brain Res. 2003, 989, 135–146. [Google Scholar] [CrossRef]
- Nagai, J.; Rajbhandari, A.K.; Gangwani, M.R.; Hachisuka, A.; Coppola, G.; Masmanidis, S.C.; Fanselow, M.S.; Khakh, B.S. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell 2019, 177, 1280–1292.e20. [Google Scholar] [CrossRef]
- Beenhakker, M.P.; Huguenard, J.R. Astrocytes as Gatekeepers of GABA B Receptor Function. J. Neurosci. 2010, 30, 15262–15276. [Google Scholar] [CrossRef]
- Goubard, V.; Fino, E.; Venance, L. Contribution of Astrocytic Glutamate and GABA Uptake to Corticostriatal Information Processing. J. Physiol. 2011, 589, 2301–2319. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-T.; Galvan, A.; Wichmann, T.; Smith, Y. Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia. Front. Syst. Neurosci. 2011, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.M.; Lopes, E.F.; Cragg, S.J. Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling. Cells 2021, 10, 709. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.-E.; Woo, J.; Justin Lee , C. Astrocytes as GABA-Ergic and GABA-Ceptive Cells. Neurochem. Res. 2012, 37, 2474–2479. [Google Scholar] [CrossRef]
- Galvan, A.; Kuwajima, M.; Smith, Y. Glutamate and GABA Receptors and Transporters in the Basal Ganglia: What Does Their Subsynaptic Localization Reveal about Their Function? Neuroscience 2006, 143, 351–375. [Google Scholar] [CrossRef]
- Boison, D.; Chen, J.-F.; Fredholm, B.B. Adenosine Signaling and Function in Glial Cells. Cell Death Differ. 2010, 17, 1071–1082. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Ådén, U.; Svenningsson, P. Adenosine Receptor Signaling in Vitro and in Vivo. Drug Dev. Res. 2001, 52, 274–282. [Google Scholar] [CrossRef]
- Burnstock, G.; Kennedy, C. Is There a Basis for Distinguishing Two Types of P2-Purinoceptor? Gen. Pharmacol. Vasc. Syst. 1985, 16, 433–440. [Google Scholar] [CrossRef]
- Köles, L.; Leichsenring, A.; Rubini, P.; Illes, P. P2 Receptor Signaling in Neurons and Glial Cells of the Central Nervous System. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 61, pp. 441–493. ISBN 978-0-12-385526-8. [Google Scholar]
- North, R.A. Molecular Physiology of P2X Receptors. Physiol. Rev. 2002, 82, 1013–1067. [Google Scholar] [CrossRef]
- Abbracchio, M.P.; Burnstock, G.; Boeynaems, J.-M.; Barnard, E.A.; Boyer, J.L.; Kennedy, C.; Knight, G.E.; Fumagalli, M.; Gachet, C.; Jacobson, K.A.; et al. International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy. Pharmacol. Rev. 2006, 58, 281–341. [Google Scholar] [CrossRef]
- Biber, K.; Klotz, K.-N.; Berger, M.; Gebicke-Härter, P.J.; Van Calker, D. Adenosine A1 Receptor-Mediated Activation of Phospholipase C in Cultured Astrocytes Depends on the Level of Receptor Expression. J. Neurosci. 1997, 17, 4956–4964. [Google Scholar] [CrossRef] [PubMed]
- El-Etr, M.; Marin, P.; Tencé, M.; Delumeau, J.C.; Cordier, J.; Glowinski, J.; Premont, J. 24-Chloroadenosine Potentiates the A1-Adrenergic Activation of Phospholipase C through a Mechanism Involving Arachidonic Acid and Glutamate in Striatal Astrocytes. J. Neurosci. 1992, 12, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, R.; Cottini, L.; Fumagalli, M.; Ceruti, S.; Abbracchio, M.P. Blockade of A2A Adenosine Receptors Prevents Basic Fibroblast Growth Factor-induced Reactive Astrogliosis in Rat Striatal Primary Astrocytes. Glia 2003, 43, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Augusto, E.; Agostinho, P.; Cunha, R.A.; Chen, J.-F. Antagonistic Interaction between Adenosine A2A Receptors and Na+ /K+ -ATPase-α2 Controlling Glutamate Uptake in Astrocytes. J. Neurosci. 2013, 33, 18492–18502. [Google Scholar] [CrossRef]
- Pintor, A.; Galluzzo, M.; Grieco, R.; Pèzzola, A.; Reggio, R.; Popoli, P. Adenosine A2A Receptor Antagonists Prevent the Increase in Striatal Glutamate Levels Induced by Glutamate Uptake Inhibitors. J. Neurochem. 2004, 89, 152–156. [Google Scholar] [CrossRef]
- Hettinger, B.D.; Lee, A.; Linden, J.; Rosin, D.L. Ultrastructural Localization of Adenosine A2A Receptors Suggests Multiple Cellular Sites for Modulation of GABAergic Neurons in Rat Striatum. J. Comp. Neurol. 2001, 431, 331–346. [Google Scholar] [CrossRef]
- Peakman, M.-C.; Hill, S.J. Adenosine A2B-Receptor-Mediated Cyclic AMP Accumulation in Primary Rat Astrocytes. Br. J. Pharmacol. 1994, 111, 191–198. [Google Scholar] [CrossRef]
- Vazquez, J.F.; Clement, H.; Sommer, O.; Schulz, E.; Van Calker, D. Local Stimulation of the Adenosine A2B Receptors Induces an Increased Release of IL-6 in Mouse Striatum: An in Vivo Microdialysis Study. J. Neurochem. 2008, 105, 904–909. [Google Scholar] [CrossRef]
- Abbracchio, M.P.; Ceruti, S.; Brambilla, R.; Barbieri, D.; Camurri, A.; Franceschi, C.; Giammarioli, A.M.; Jacobson, K.A.; Cattabeni, F.; Malorni, W. Adenosine A3 Receptors and Viability of Astrocytes. Drug Dev. Res. 1998, 45, 379–386. [Google Scholar] [CrossRef]
- Franke, H.; Krügel, U.; Grosche, J.; Heine, C.; Härtig, W.; Allgaier, C.; Illes, P. P2Y Receptor Expression on Astrocytes in the Nucleus Accumbens of Rats. Neuroscience 2004, 127, 431–441. [Google Scholar] [CrossRef]
- Franke, H.; Krügel, U.; Grosche, J.; Illes, P. Immunoreactivity for Glial Fibrillary Acidic Protein and P2 Receptor Expression on Astrocytes in Vivo. Drug Dev. Res. 2003, 59, 175–189. [Google Scholar] [CrossRef]
- Franke, H.; Kittner, H.; Grosche, J.; Illes, P. Enhanced P2Y1 Receptor Expression in the Brain after Sensitisation with D-Amphetamine. Psychopharmacology 2003, 167, 187–194. [Google Scholar] [CrossRef]
- El-Etr, M.; Cordier, J.; Glowinski, J.; Premont, J. A Neuroglial Cooperativity Is Required for the Potentiation by 2Ghloroadenosine of the Muscarinic-Sensitive Phospholipase C in the Striatum. J. Neurosci. 1989, 9, 1473–1480. [Google Scholar] [CrossRef]
- Matos, M.; Augusto, E.; Santos-Rodrigues, A.D.; Schwarzschild, M.A.; Chen, J.; Cunha, R.A.; Agostinho, P. Adenosine A2A Receptors Modulate Glutamate Uptake in Cultured Astrocytes and Gliosomes. Glia 2012, 60, 702–716. [Google Scholar] [CrossRef]
- Matos, M.; Shen, H.-Y.; Augusto, E.; Wang, Y.; Wei, C.J.; Wang, Y.T.; Agostinho, P.; Boison, D.; Cunha, R.A.; Chen, J.-F. Deletion of Adenosine A2A Receptors From Astrocytes Disrupts Glutamate Homeostasis Leading to Psychomotor and Cognitive Impairment: Relevance to Schizophrenia. Biol. Psychiatry 2015, 78, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Van Wagoner, N.J.; Benveniste, E.N. Interleukin-6 Expression and Regulation in Astrocytes. J. Neuroimmunol. 1999, 100, 124–139. [Google Scholar] [CrossRef]
- Abbracchio, M.P.; Saffrey, M.J.; Ho¨pker, V.; Burnstock, G. Modulation of Astroglial Cell Proliferation by Analogues of Adenosine and ATP in Primary Cultures of Rat Striatum. Neuroscience 1994, 59, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Franke, H.; Grosche, J.; Schädlich, H.; Krügel, U.; Allgaier, C.; Illes, P. P2X Receptor Expression on Astrocytes in the Nucleus Accumbens of Rats. Neuroscience 2001, 108, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Franke, H.; Krügel, U.; Illes, P. P2Y and P2X Receptor-Mediated Mitogenic Effcts on Astrocytes in Vivo. Br. J. Pharmacol. 1999, 128, 153. [Google Scholar]
- Franke, H.; Krügel, U.; Schmidt, R.; Illes, P. P2Y-receptor mediated astrogliosis in vivo. Drug Dev. Res. 2000, 50, 91. [Google Scholar]
- Hertz, L.; Chen, Y.; Gibbs, M.; Zang, P.; Peng, L. Astrocytic Adrenoceptors: A Major Drug Target in Neurological and Psychiatric Disorders? Curr. Drug Target-CNS Neurol. Disord. 2004, 3, 239–268. [Google Scholar] [CrossRef] [PubMed]
- Hertz, L.; Lovatt, D.; Goldman, S.A.; Nedergaard, M. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i. Neurochem. Int. 2010, 57, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Giaume, C.; Marin, P.; Cordier, J.; Glowinski, J.; Premont, J. Adrenergic Regulation of Intercellular Communications between Cultured Striatal Astrocytes from the Mouse. Proc. Natl. Acad. Sci. USA 1991, 88, 5577–5581. [Google Scholar] [CrossRef]
- Delumeau, J.C.; Tencé, M.; Marin, P.; Cordier, J.; Glowinski, J.; Prémont, J. Synergistic Regulation of Cytosolic Ca2+ Concentration by Adenosine and α1-Adrenergic Agonists in Mouse Striatal Astrocytes. Eur. J. Neurosci. 1991, 3, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Schuebel, K.E.; Jair, K.; Cimbro, R.; De Biase, L.M.; Goldman, D.; Bonci, A. Ventral Midbrain Astrocytes Display Unique Physiological Features and Sensitivity to Dopamine D2 Receptor Signaling. Neuropsychopharmacology 2019, 44, 344–355. [Google Scholar] [CrossRef]
- Shao, Y.; Sutin, J. Expression of Adrenergic Receptors in Individual Astrocytes and Motor Neurons Isolated from the Adult Rat Brain. Glia 1992, 6, 108–117. [Google Scholar] [CrossRef]
- Puig, J.F.; Pacitti, A.J.; Guzman, N.J.; Crews, F.T.; Sumners, C.; Raizada, M.K. A1-Adrenergic Receptors in the Brain: Characterization in Astrocytic Glial Cultures and Comparison with Neuronal Cultures. Brain Res. 1990, 527, 318–325. [Google Scholar] [CrossRef]
- Jensen, C.J.; Demol, F.; Bauwens, R.; Kooijman, R.; Massie, A.; Villers, A.; Ris, L.; De Keyser, J. Astrocytic B2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice. PLoS ONE 2016, 11, e0164721. [Google Scholar] [CrossRef]
- Wahis, J.; Holt, M.G. Astrocytes, Noradrenaline, A1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front. Cell. Neurosci. 2021, 15, 645691. [Google Scholar] [CrossRef]
- Kang, S.; Hong, S.-I.; Kang, S.; Song, M.; Yang, M.A.; Essa, H.; Baker, M.; Lee, J.; Bruce, R.A.; Lee, S.W.; et al. Astrocyte Activities in the External Globus Pallidus Regulate Action-Selection Strategies in Reward-Seeking Behaviors. Sci. Adv. 2023, 9, eadh9239. [Google Scholar] [CrossRef]
- Campos, A.C.P.; Kikuchi, D.S.; Paschoa, A.F.N.; Kuroki, M.A.; Fonoff, E.T.; Hamani, C.; Pagano, R.L.; Hernandes, M.S. Unraveling the Role of Astrocytes in Subthalamic Nucleus Deep Brain Stimulation in a Parkinson’s Disease Rat Model. Cell. Mol. Neurobiol. 2020, 40, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Stedehouder, J.; Roberts, B.M.; Raina, S.; Bossi, S.; Liu, A.K.L.; Doig, N.M.; McGerty, K.; Magill, P.J.; Parkkinen, L.; Cragg, S.J. Rapid Modulation of Striatal Cholinergic Interneurons and Dopamine Release by Satellite Astrocytes. Nat. Commun. 2024, 15, 10017. [Google Scholar] [CrossRef] [PubMed]
- Njoo, C.; Agarwal, N.; Lutz, B.; Kuner, R. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons. PLoS Biol. 2015, 13, e1002286. [Google Scholar] [CrossRef] [PubMed]
- Tsou, K.; Brown, S.; Sañudo-Peña, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical Distribution of Cannabinoid CB1 Receptors in the Rat Central Nervous System. Neuroscience 1998, 83, 393–411. [Google Scholar] [CrossRef]
- Bénard, G.; Massa, F.; Puente, N.; Lourenço, J.; Bellocchio, L.; Soria-Gómez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; et al. Mitochondrial CB1 Receptors Regulate Neuronal Energy Metabolism. Nat. Neurosci. 2012, 15, 558–564. [Google Scholar] [CrossRef]
- Hösli, L.; Hösli, E.; Schneider, U.; Wiget, W. Evidence for the Existence of Histamine H1- and H2-Receptors on Astrocytes of Cultured Rat Central Nervous System. Neurosci. Lett. 1984, 48, 287–291. [Google Scholar] [CrossRef]
- Miyazaki, I.; Asanuma, M. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson’s Disease. Curr. Med. Chem. 2016, 23, 686–700. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X.; Hui, Y.; Zhu, C.; Wu, J.; Taylor, D.H.; Ji, J.; Fan, W.; Huang, Z.; Hu, J. Activation of A7 Nicotinic Acetylcholine Receptors Protects Astrocytes against Oxidative Stress-Induced Apoptosis: Implications for Parkinson’s Disease. Neuropharmacology 2015, 91, 87–96. [Google Scholar] [CrossRef]
- Holt, M.G. Astrocyte Heterogeneity and Interactions with Local Neural Circuits. Essays Biochem. 2023, 67, 93–106. [Google Scholar] [CrossRef]
- Rusnakova, V.; Honsa, P.; Dzamba, D.; Ståhlberg, A.; Kubista, M.; Anderova, M. Heterogeneity of Astrocytes: From Development to Injury—Single Cell Gene Expression. PLoS ONE 2013, 8, e69734. [Google Scholar] [CrossRef]
- Kruyer, A. Astrocyte Heterogeneity in Regulation of Synaptic Activity. Cells 2022, 11, 3135. [Google Scholar] [CrossRef]
- Nimmerjahn, A. Astrocytes Going Live: Advances and Challenges. J. Physiol. 2009, 587, 1639–1647. [Google Scholar] [CrossRef]
- Kanemaru, K.; Sekiya, H.; Xu, M.; Satoh, K.; Kitajima, N.; Yoshida, K.; Okubo, Y.; Sasaki, T.; Moritoh, S.; Hasuwa, H.; et al. In Vivo Visualization of Subtle, Transient, and Local Activity of Astrocytes Using an Ultrasensitive Ca2+ Indicator. Cell Rep. 2014, 8, 311–318. [Google Scholar] [CrossRef]
- Qin, H.; He, W.; Yang, C.; Li, J.; Jian, T.; Liang, S.; Chen, T.; Feng, H.; Chen, X.; Liao, X.; et al. Monitoring Astrocytic Ca2+ Activity in Freely Behaving Mice. Front. Cell. Neurosci. 2020, 14, 603095. [Google Scholar] [CrossRef]
- Losi, G.; Mariotti, L.; Sessolo, M.; Carmignoto, G. New Tools to Study Astrocyte Ca2+ Signal Dynamics in Brain Networks In Vivo. Front. Cell. Neurosci. 2017, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Shigetomi, E.; Looger, L.L.; Khakh, B.S. Genetically Encoded Calcium Indicators and Astrocyte Calcium Microdomains. Neuroscientist 2013, 19, 274–291. [Google Scholar] [CrossRef] [PubMed]

| Receptor | References | Brain Region(s) | Species |
|---|---|---|---|
| D1R | Miyazaki et al., 2004 [29] | Striatum, mesencephalon | Rat |
| Mastrogiacomo et al., 2022 [68] | Striatum, GPe | Mouse | |
| Nagatomo et al., 2017 [70] | SNr | Mouse | |
| Reuss et al., 2000 [71] | Striatum, GP | Rat | |
| Zanassi et al., 1999 [72] | Striatum | Rat | |
| D2R | Miyazaki et al., 2004 [29] | Striatum, mesencephalon | Rat |
| Mastrogiacomo et al., 2022 [68] | Striatum, GPe | Mouse | |
| Emmi et al., 2022 [69] | STh | Human | |
| Reuss et al., 2000 [71] | Striatum, GP | Rat | |
| Shao et al., 2013 [73] | Striatum | Mouse | |
| D3R | Miyazaki et al., 2004 [29] | Striatum, mesencephalon | Rat |
| Mastrogiacomo et al., 2022 [68] | Striatum, GPe | Mouse | |
| Montoya et al. 2019 [74] | Striatum, mesencephalon | Mouse | |
| Elgueta et al., 2017 [75] | Striatum, mesencephalon | Mouse | |
| D4R | Miyazaki et al., 2004 [29] | Striatum, mesencephalon | Rat |
| Svingos et al., 1999 [76] | NAcc | Rat | |
| D5R | Miyazaki et al., 2004 [29] | Striatum, mesencephalon | Rat |
| Brito et al., 2004 [77] | Striatum | Mouse | |
| A2A-D2R | Cervetto et al., 2017 [78] | Striatum | Rat |
| Cervetto et al., 2018 [79] | Striatum | Rat | |
| Pelassa et al., 2019 [80] | Striatum | Rat | |
| D2-OTR | Amato et al., 2023 [81] | Striatum | Rat |
| A2A-D2-OTR | Amato et al., 2024 [82] | Striatum | Rat |
| Receptor | References | Brain Region(s) | Species |
|---|---|---|---|
| NMDA | Min & Nevian, 2012 [28] | Cortico-striatal synapses | Mouse |
| Pascual et al., 2005 [41] | Basal ganglia (general) | Rat | |
| Palygin et al., 2011 [91] | Striatum | Mouse | |
| Henneberger et al., 2013 [92] | Striatum | Rat | |
| Höft et al., 2014 [93] | Striatum, NAcc | Mouse | |
| Sun et al., 2021 [94] | Striatum | Mouse | |
| Devaraju et al., 2013 [95] | Basal ganglia (general) | Mouse | |
| Tawfik et al., 2010 [96] | Basal ganglia (general) | Rat | |
| Sheldon & Robinson, 2007 [97] | Basal ganglia (general) | Rat | |
| Kainate | Jin & Smith, 2007 [98] | Globus Pallidus | Rat |
| Cavaccini et al., 2020 [99] | Striatum | Mouse | |
| mGluR5 (Group I) | Martín et al., 2015 [83] | Basal ganglia (general) | Mouse |
| Corkrum et al., 2020 [84] | NAcc | Mouse | |
| Cavaccini et al., 2020 [99] | Striatum | Mouse | |
| Testa et al., 1995 [100] | Striatum | Rat | |
| Spampinato et al., 2018 [101] | Basal ganglia (general) | Mouse | |
| mGluR3 (Group II) | D’Antoni et al., 2008 [102] | SN, GP, Striatum | Rat |
| Durand et al., 2013 [103] | Striatum | Mouse | |
| Di Menna et al., 2025 [104] | Striatum, SN | Mouse | |
| Matute et al., 2006 [105] | Striatum | Rat | |
| mGluR4/8 (Group III) | Awad et al., 2000 [106] | STh | Rat |
| Corti et al., 2002 [107] | |||
| Shen & Johnson, 2003 [108] |
| Receptor | References | Brain Region(s) | Species |
|---|---|---|---|
| GABA-α | Fraser et al., 1994 [134] | Striatum | Rat |
| Lee et al., 2011 [135] | Basal ganglia (general) | Rodent | |
| Yoon et al., 2011 [136] | Striatum | Rat | |
| Liu et al., 2022 [139] | Astrocyte membranes (soma, processes, endfeet) | Rat | |
| GABA-β | Charles et al., 2003 [138] | Substantia nigra, Globus pallidus | Rat |
| Charles et al., 2003 [141] | Somata and processes of astrocytes | Rat | |
| Nagai et al., 2019 [142] | Striatum | Mouse | |
| Jin et al., 2011 [145] | Basal ganglia (general) | Rat | |
| Roberts et al., 2021 [146] | Striatum | Rat/Mouse | |
| Galvan et al., 2006 [148] | Corticostriatal synapses | Rat |
| Receptor | References | Brain Region(s) | Species |
|---|---|---|---|
| A1R | Guo et al., 2024 [49] | Striatum | Mouse |
| Biber et al., 1997 [155] | Striatum, tegmentum | Rat | |
| El-Etr et al., 1989 [156] | Striatum | Mouse, Rat | |
| A2AR | Emmi et al., 2022 [69] | STh | Human |
| Pelassa et al., 2019 [80] | Striatum | Rat | |
| Brambilla et al., 2003 [157] | Striatum | Rat | |
| Matos et al., 2013 [158] | Striatum | Mouse | |
| Pintor et al., 2004 [159] | Striatum | Rat | |
| Hettinger et al., 2001 [160] | Dorsolateral striatum | Rat | |
| A2BR | Peakman et al., 1994 [161] | Telencephalon, diencephalon | Rat |
| Vazquez et al., 2008 [162] | Striatum | Mouse | |
| A3R | Abbracchio et al., 1998 [163] | Striatum | Rat |
| Receptor | References | Brain Regions | Species |
|---|---|---|---|
| P2X | Franke et al., 2001 [32] | NAcc | Rat |
| Franke et al., 2001 [164] | NAcc | Rat | |
| Franke et al., 2003 [165] | NAcc | Rat | |
| P2Y | Centemeri et al., 1997 [30] | Striatum | Rat |
| Franke et al., 2001 [32] | NAcc | Rat | |
| Franke et al., 2004 [164] | NAcc | Rat | |
| Franke et al., 2003 [165] | NAcc | Rat | |
| Franke et al., 2003 [166] | Striatum | Rat |
| Receptor | References | Brain Region(s) | Species |
|---|---|---|---|
| α1-AR | Hertz et al., 2004 [175] | General | Review |
| Giaume et al., 1991 [177] | Striatum | Rat | |
| Delumeau et al., 1991 [178] | Striatum | Rat | |
| Xin et al., 2019 [179] | Ventral midbrain (SN, VTA) | Mouse | |
| Shao & Sutin, 1992 [180] | Striatum | Rat | |
| Wahis & Holt, 2021 [183] | General | Review | |
| Hertz et al., 2004 [175] | General | Review | |
| β-AR | Giaume et al., 1991 [177] | Striatum | Rat |
| Shao & Sutin, 1992 [180] | Striatum | Rat | |
| Jensen et al., 2016 [182] | General | Mouse | |
| α2-AR | Xin et al., 2019 [179] | SN | Mouse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tushevski, A.; Happe, L.; Stocco, E.; De Caro, R.; Macchi, V.; Porzionato, A.; Emmi, A. Astrocytic Receptor Systems of the Basal Ganglia. Receptors 2026, 5, 2. https://doi.org/10.3390/receptors5010002
Tushevski A, Happe L, Stocco E, De Caro R, Macchi V, Porzionato A, Emmi A. Astrocytic Receptor Systems of the Basal Ganglia. Receptors. 2026; 5(1):2. https://doi.org/10.3390/receptors5010002
Chicago/Turabian StyleTushevski, Aleksandar, Linus Happe, Elena Stocco, Raffaele De Caro, Veronica Macchi, Andrea Porzionato, and Aron Emmi. 2026. "Astrocytic Receptor Systems of the Basal Ganglia" Receptors 5, no. 1: 2. https://doi.org/10.3390/receptors5010002
APA StyleTushevski, A., Happe, L., Stocco, E., De Caro, R., Macchi, V., Porzionato, A., & Emmi, A. (2026). Astrocytic Receptor Systems of the Basal Ganglia. Receptors, 5(1), 2. https://doi.org/10.3390/receptors5010002

