Spermidine Treatments Improve Germination of Long-Term Stored Seeds: A Case Study of Populus alba Clone ‘Villafranca’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Material and Storage Conditions
2.2. Experimental Flow to Design Tailored Priming Protocols
2.3. Germination Tests
2.4. Viability Assay
2.5. ROS Quantification
2.6. RNA Extraction and cDNA Synthesis
2.7. Quantitative Real-Time PCR (qRT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Reduced Seed Viability in Long-Term Stored P. alba Seeds
3.2. Imbibition Curves Denote Rapid Water Loss During Dehydration
3.3. Hydropriming Does Not Improve Germination of Naturally Aged Seeds
3.4. Seed Soaking with Spermidine Enhances Germination Performance
3.5. Molecular Characterization of Long-Term Stored Populus Alba Clone ‘Villafranca’ Seeds Along the Hydration–Dehydration Cycle
3.5.1. SPD Enhances the Capacity of Aged Seeds to Effectively Scavenge ROS
3.5.2. Effect of SPD on Antioxidant, DT, and Cell Cycle Related Gene Expression Profiles
3.6. Clustering of Germination Parameters, ROS Accumulation, and Gene Expression Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eckenwalder, J.E. Systematics and evolution of populus. In Biology of Populus; Stettler, R.F., Heilman, J.P.E., Hinckley, T.M., Eds.; National Research Council of Canada Research: Ottawa, ON, Canada, 1996; pp. 7–32. [Google Scholar]
- Pellegrino, E.; Di Bene, C.; Tozzini, C.; Bonari, E. Impact on soil quality of a 10-year-old short-rotation coppice poplar stand compared with intensive agricultural and uncultivated systems in a Mediterranean area. Agric. Ecosyst. Environ. 2011, 140, 245–254. [Google Scholar] [CrossRef]
- Cantamessa, S.; Rosso, L.; Giorcelli, A.; Chiarabaglio, P. The environmental impact of poplar stand Management: A life cycle assessment study of different scenarios. Forests 2022, 13, 464. [Google Scholar] [CrossRef]
- Nissim, W.G.; Castiglione, S.; Guarino, F.; Pastore, M.C.; Labra, M. Beyond cleansing: Ecosystem services related to phytoremediation. Plants 2023, 12, 1031. [Google Scholar] [CrossRef]
- Pra, A.; Pettenella, D. Investment returns from hybrid poplar plantations in northern Italy between 2001 and 2016: Are we losing a bio-based segment of the primary economy? Ital. Rev. Agric. Econ. 2019, 74, 49–71. [Google Scholar]
- Caudullo, G.; De Rigo, D. Populus alba in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; European Union: Luxemborg, 2016; pp. 134–135. [Google Scholar]
- Corona, P.; Bergante, S.; Castro, G.; Chiarabaglio, P.M.; Coaloa, D.; Facciotto, G.; Gennaro, M.; Giorcelli, A.; Rosso, L.; Vietto, L.; et al. Linee di Indirizzo per Una Pioppicoltura Sostenibile; Rete Rurale Nazionale, Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria: Rome, Italy, 2018; ISBN 978-88-99595-96-8.
- Mushtaq, T.; Banyal, R.; Mugloo, J.; Mushtaq, T.; Aziz, M.A. Clonal forestry: An effective technique for increasing the productivity of plantations. SKUAST J. Res. 2017, 19, 22–28. [Google Scholar]
- Dalziell, E.L.; Lewandrowski, W.; Commander, L.E.; Elliott, C.P.; Erickson, T.E.; Tudor, E.P.; Turner, S.R.; Merritt, D.J. Seed traits inform the germination niche for biodiverse ecological restoration. Seed Sci. Technol. 2022, 50, 103–124. [Google Scholar] [CrossRef]
- Kim, D.H. Extending Populus seed longevity by controlling seed moisture content and temperature. PLoS ONE 2018, 13, e0203080. [Google Scholar] [CrossRef]
- Karrenberg, S.; Suter, M. Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains. Am. J. Bot. 2003, 90, 749–754. [Google Scholar] [CrossRef]
- González, E.; Bourgeois, B.; Masip, A.; Sher, A.A. Trade-offs in seed dispersal strategies across riparian trees: The how matters as much as the when. River Res. Appl. 2016, 32, 786–794. [Google Scholar] [CrossRef]
- Lefebvre, M.; Villar, M.; Boizot, N.; Delile, A.; Dimouro, B.; Lomenech, A.M.; Teyssier, C. Variability in seeds’physicochemical characteristics, germination and seedling growth within and between two French Populus nigra L. populations. Peer Community J. 2022, 2, e10. [Google Scholar] [CrossRef]
- Qu, C.; Zhang, S.; Zhao, H.; Chen, J.; Zuo, Z.; Sun, X.; Cheng, Y.; Xu, Z.; Liu, G. Analysis of the energy source at the early stage of poplar seed germination: Verification of Perl’s pathway. 3 Biotech 2020, 10, 418. [Google Scholar] [CrossRef] [PubMed]
- Kijak, H.; Ratajczak, E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int. J. Mol. Sci. 2020, 21, 3612. [Google Scholar] [CrossRef] [PubMed]
- Tweddle, J.C.; Dickie, J.B.; Baskin, C.C.; Baskin, J.M. Ecological aspects of seed desiccation sensitivity. J. Ecol. 2003, 91, 294–304. [Google Scholar] [CrossRef]
- Gosling, P. Raising Trees and Shrubs from Seeds; Practice Guide; Forestry Commission Practice Guide; Forestry Commission: Edinburgh, UK, 2007; pp. 1–28.
- Bonner, F.T. Storage of seed. In The Woody Plant Seed Manual, 1st ed.; Agriculture Handbook; United States Department of Agriculture, Forest Service: Washington, DC, USA, 2008; pp. 85–96. [Google Scholar]
- Michalak, M.; Plitta, B.P.; Tylkowski, T.; Chmielarz, P.; Suszka, J. Desiccation tolerance and cryopreservation of seeds of black poplar (Populus nigra L.), a disappearing tree species in Europe. Eur. J. For. Res. 2014, 134, 53–60. [Google Scholar] [CrossRef]
- Chen, H.; Shen, Y. Investigation of Water Distribution and Mobility Dynamics in Recalcitrant Quercus acutissima Seeds during Desiccation Using Magnetic Resonance Methods. Forests 2023, 14, 738. [Google Scholar] [CrossRef]
- Ganatsas, P.; Tsakaldimi, M. A comparative study of desiccation responses of seeds of three drought-resistant Mediterranean oaks. For. Ecol. Manag. 2013, 305, 189–194. [Google Scholar] [CrossRef]
- Bento, L.R.; Spaccini, R.; Cangemi, S.; Mazzei, P.; De Freitas, B.B.; De Souza, A.E.O.; Moreira, A.B.; Ferreira, O.P.; Piccolo, A.; Bisinoti, M.C. Hydrochar obtained with by-products from the sugarcane industry: Molecular features and effects of extracts on maize seed germination. J. Environ. Manag. 2021, 281, 11878. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Nafees, M.; Chen, J.; Darras, A.; Ferrante, A.; Hancock, J.T.; Ashraf, M.; Zaid, A.; Latif, N.; Corpas, F.J.; et al. Chemical priming enhances plant tolerance to salt stress. Front. Plant Sci. 2022, 13, 946922. [Google Scholar] [CrossRef]
- BiBi, R.; Elahi, N.N.; Danish, S.; Alahmadi, T.A.; Ansari, M.J. Enhancing germination and growth of canola (Brassica napus L.) through hydropriming and NaCl priming. Sci. Rep. 2024, 14, 14026. [Google Scholar] [CrossRef]
- Dueñas, C.; Pagano, A.; Calvio, C.; Srikanthan, D.S.; Slamet-Loedin, I.; Balestrazzi, A.; Macovei, A. Genotype-specific germination behavior induced by sustainable priming techniques in response to water deprivation stress in rice. Front. Plant Sci. 2024, 15, 1344383. [Google Scholar] [CrossRef]
- Gaonkar, S.S.; Sincinelli, F.; Balestrazzi, A.; Pagano, A. Quercetin and Rutin as Tools to Enhance Antioxidant Profiles and Post-Priming Seed Storability in Medicago truncatula. Agriculture 2024, 14, 738. [Google Scholar] [CrossRef]
- Gaonkar, S.S. Exploring the molecular mechanisms of seed deterioration in the model species Medicago truncatula L. and Populus alba L.: Designing Anti-Aging Treatments to Protect Seeds in Storage. Ph.D. Thesis, University of Pavia, Pavia, Italy, 2024. [Google Scholar]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Pagano, A.; Macovei, A.; Balestrazzi, A. Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep. 2023, 42, 657–688. [Google Scholar] [CrossRef]
- Smolikova, G.; Leonova, T.; Vashurina, N.; Frolov, A.; Medvedev, S. Desiccation tolerance as the basis of Long-Term seed viability. Int. J. Mol. Sci. 2020, 22, 101. [Google Scholar] [CrossRef]
- Pagano, A.; Folini, G.; Pagano, P.; Sincinelli, F.; Rossetto, A.; Macovei, A.; Balestrazzi, A. ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds. Agronomy 2022, 12, 268. [Google Scholar] [CrossRef]
- Pagano, A.; Zannino, L.; Pagano, P.; Doria, E.; Dondi, D.; Macovei, A.; Biggiogera, M.; De Sousa Araújo, S.; Balestrazzi, A. Changes in genotoxic stress response, ribogenesis and PAP (3′-phosphoadenosine 5′-phosphate) levels are associated with loss of desiccation tolerance in overprimed Medicago truncatula seeds. Plant Cell Environ. 2022, 45, 1457–1473. [Google Scholar] [CrossRef]
- Kusano, T.; Berberich, T.; Tateda, C.; Takahashi, Y. Polyamines: Essential factors for growth and survival. Planta 2008, 228, 367–381. [Google Scholar] [CrossRef]
- Lechowska, K.; Wojtyla, U.; Quinet, M.; Kubala, S.; Lutts, S.; Garnczarska, M. Endogenous Polyamines and Ethylene Biosynthesis in Relation to Germination of Osmoprimed Brassica napus Seeds under Salt Stress. Int. J. Mol. Sci. 2021, 23, 349. [Google Scholar] [CrossRef]
- Shao, J.; Huang, K.; Batool, M.; Idrees, F.; Afzal, R.; Haroon, M.; Noushahi, H.A.; Wu, W.; Hu, Q.; Lu, X.; et al. Versatile roles of polyamines in improving abiotic stress tolerance of plants. Front. Plant Sci. 2022, 1, 1003155. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Y.; Zhang, X.Q.; Ma, X.; Huang, L.K.; Yan, Y.H. Exogenous Spermidine Improves Seed Germination of White Clover under Water Stress via Involvement in Starch Metabolism, Antioxidant Defenses and Relevant Gene Expression. Molecules 2014, 19, 18003–18024. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, C.; He, F.; Li, Z.; Guan, Y.; Hu, Q.; Hu, J. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol. 2017, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Roychoudhury, A. Seed priming with spermine and spermidine regulates the expression of diverse groups of abiotic stress-responsive genes during salinity stress in the seedlings of indica rice varieties. Plant Gene 2017, 11, 124–132. [Google Scholar] [CrossRef]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef]
- Hu, Q.J.; Chen, M.X.; Song, T.; Cheng, C.L.; Tian, Y.; Hu, J.; Zhang, J.H. Spermidine enhanced the antioxidant capacity of rice seeds during seed aging. Plant Growth Regul. 2020, 91, 397–406. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Wan, Z.; Chen, X.; Liu, C.; Liu, C.; Zhou, Y. Exogenous Spermidine Promotes Germination of Aged Sorghum Seeds by Mediating Sugar Metabolism. Plants 2022, 11, 2853. [Google Scholar] [CrossRef]
- Fuchs, H.; Plitta-Michalak, B.P.; Małecka, A.; Ciszewska, L.; Sikorski, U.; Staszak, A.M.; Michalak, M.; Ratajczak, E. The chances in the redox priming of nondormant recalcitrant seeds by spermidine. Tree Physiol. 2023, 43, 1142–1158. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Hu, X.H. Exogenous spermidine-induced changes at physiological and biochemical parameters levels in tomato seedling grown in saline-alkaline condition. Bot. Stud. 2014, 55, 58. [Google Scholar] [CrossRef]
- Lou, Y.; Guan, R.; Sun, M.; Han, F.; He, W.; Wang, H.; Song, F.; Cui, X.; Zhuge, Y. Spermidine application alleviates salinity damage to antioxidant enzyme activity and gene expression in alfalfa. Ecotoxicology 2018, 27, 1323–1330. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, P.; Gu, Z.; Ma, M.; Yang, R. Spermidine improves antioxidant activity and energy metabolism in mung bean sprouts. Food Chem. 2020, 309, 125759. [Google Scholar] [CrossRef]
- Korbas, A.; Kubiś, J.; Rybus-Zając, M.; Chadzinikolau, T. Spermidine Modify Antioxidant Activity in Cucumber Exposed to Salinity Stress. Agronomy 2022, 12, 1554. [Google Scholar] [CrossRef]
- Li, W.; Niu, Y.; Zheng, Y.; Wang, Z. Advances in the understanding of reactive Oxygen Species-Dependent regulation on seed dormancy, germination, and deterioration in crops. Front. Plant Sci. 2022, 13, 826809. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. Comptes Rendus. Biol. 2008, 33, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Kim, J.H. Effect of storage temperature and cultivars on seed germination of Lilium × formolongi hort. J. Exp. Biol. Agric. 2020, 8, 621–627. [Google Scholar] [CrossRef]
- Faria, J.M.; Buitink, J.; van Lammeren, A.A.; Hilhorst, H.W. Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. J. Exp. Bot. 2005, 56, 2119–2130. [Google Scholar] [CrossRef]
- De Barros França-Neto, J.; Krzyzanowski, F.C. Tetrazolium: An important test for physiological seed quality evaluation. J. Seed Sci. 2019, 41, 359–366. [Google Scholar] [CrossRef]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef]
- Griffo, A.; Bosco, N.; Pagano, A.; Balestrazzi, A.; Macovei, A. Noninvasive methods to detect reactive oxygen species as a proxy of seed quality. Antioxidants 2023, 12, 626. [Google Scholar] [CrossRef]
- Oñate-Sánchez, L.; Vicente-Carbajosa, J. DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res. Notes 2008, 1, 93. [Google Scholar] [CrossRef]
- Thomsen, R.; Sølvsten, C.A.E.; Linnet, T.E.; Blechingberg, J.; Nielsen, A.L. Analysis of qPCR data by converting exponentially related Ct values into linearly related X0 values. J. Bioinform. Comput. Biol. 2010, 8, 885–900. [Google Scholar] [CrossRef]
- Assaad, H.I.; Hou, Y.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid publication-ready MS-Word tables for two-way ANOVA. SpringerPlus 2015, 4, 33. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.T.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Gary, W.; Wyckoff, G.; Zasada, J.C.; Populus, L. Woody Plant Seed Manual. Agricultural Handbook 727; Bonner, F., Ed.; United States Department of Agriculture, Forest Service: Washington, DC, USA, 2008; pp. 856–871.
- Popova, E.V.; Kim, D.H.; Han, S.H.; Pritchard, H.W.; Lee, J.C. Narrowing of the critical hydration window for cryopreservation of Salix caprea seeds following ageing and a reduction in vigour. CryoLetters 2012, 33, 219–230. [Google Scholar]
- Suszka, J.; Plitta, B.P.; Michalak, M.; Bujarska-Borkowska, B.; Tylkowski, T.; Chmielarz, P. Optimal seed water content and storage temperature for preservation of Populus nigra L. germplasm. Ann. For. Sci. 2014, 71, 543–549. [Google Scholar] [CrossRef]
- Popova, E.V.; Kim, D.H.; Han, S.H.; Moltchanova, E.; Pritchard, H.W.; Hong, Y.P. Systematic overestimation of Salicaceae seed survival using radicle emergence in response to drying and storage: Implications for ex situ seed banking. Acta Physiol. Plant 2013, 35, 3015–3025. [Google Scholar] [CrossRef]
- Pritchard, H.W. Cryopreservation of desiccation tolerant seeds. Methods Mol. Biol. 2007, 368, 185–201. [Google Scholar]
- Devika, O.S.; Singh, S.; Sarkar, D.; Barnwal, P.; Suman, J.; Rakshit, A. Seed priming: A potential supplement in integrated resource management under fragile intensive ecosystems. Front. Sustain. Food Syst. 2021, 5, 65400. [Google Scholar] [CrossRef]
- Forti, C.; Shankar, A.; Singh, A.; Balestrazzi, A.; Prasad, V.; Macovei, A. Hydropriming and Biopriming Improve Medicago truncatula Seed Germination and Upregulate DNA Repair and Antioxidant Genes. Genes 2020, 11, 242. [Google Scholar] [CrossRef]
- Sushma, M.K.; Yadav, S.; Yadav, S.; Choudhary, R.; Anbalagan, A.; Navya, K.; Kaushal, K. Hydro-priming as a Sustainable Approach for Improving Germination and Seedling Growth in Tomato (Solanum lycopersicum L.). Seed Res. 2024, 51, 11–17. [Google Scholar]
- Lah, N.H.C.; Enshasy, H.A.E.; Mediani, A.; Azizan, K.A.; Aizat, W.M.; Tan, J.K.; Afzan, A.; Noor, N.M.; Rohani, E.R. An Insight into the behaviour of Recalcitrant Seeds by Understanding Their Molecular Changes upon Desiccation and Low Temperature. Agronomy 2023, 13, 2099. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Xian, Y.; Cui, C.; Xie, X.; Tong, B.; Han, B. Desiccation Sensitivity Characteristics and Low-Temperature Storage of Recalcitrant Quercus variabilis Seed. Forests 2023, 14, 1837. [Google Scholar] [CrossRef]
- Becerra-Vázquez, N.G.; Coates, R.; Sánchez-Nieto, S.; Reyes-Chilpa, R.; Orozco-Segovia, A. Effects of seed priming on germination and seedling growth of desiccation-sensitive seeds from Mexican tropical rainforest. J. Plant Res. 2020, 133, 855–872. [Google Scholar] [CrossRef] [PubMed]
- Castro-Colina, L.; Martínez-Ramos, M.; Sánchez-Coronado, M.E.; Huante, P.; Mendoza, A.; Orozco-Segovia, A. Effect of hydropriming and acclimation treatments on Quercus rugosa acorns and seedlings. Eur. J. For. Res. 2011, 131, 747–756. [Google Scholar] [CrossRef]
- Mwang’Ingo, P.; Teklehaimanot, Z.; Maliondo, S.; Msanga, H. Storage and pre-sowing treatment of recalcitrant seeds of Africa sandalwood (Osyris lanceolata). Seed Sci. Technol. 2004, 32, 547–560. [Google Scholar] [CrossRef]
- Bhanuprakash, K.; Yogeesha, H.; Vasugi, C.; Arun, M.; Naik, L. Effect of pre-soaking treatments and temperature on seed germination of guava (Psidium guajava L.). J. Drug Deliv. Sci. Technol. 2008, 36, 792–794. [Google Scholar] [CrossRef]
- Ghildiyal, S.K.; Sharma, C.M.; Khanduri, V.P. Effect of pre-soaking and pre-chilling treatments on seed germination of Pinus roxburghii provenances from western Himalaya. J. For. Res. 2009, 20, 323–330. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Fu, D.; Wang, L.; Chen, J.; Cai, C.; Ou, L. Soaking, Temperature, and Seed Placement Affect Seed Germination and Seedling Emergence of Litchi chinensis. HortScience 2015, 50, 628–632. [Google Scholar] [CrossRef]
- Amoakoh, O.A.; Nortey, D.D.N.; Sagoe, F.; Amoako, P.K.; Jallah, C.K. Effects of pre-sowing treatments on the germination and early growth performance of Pouteria campachiana. For. Sci. Technol. 2017, 13, 3–86. [Google Scholar] [CrossRef]
- Cao, D.; Huang, Y.; Mei, G.; Zhang, S.; Wu, H.; Zhao, T. Spermidine enhances chilling tolerance of kale seeds by modulating ROS and phytohormone metabolism. PLoS ONE 2023, 18, e0289563. [Google Scholar] [CrossRef]
- He, M.; Zhou, J.; Lyu, D.; Xu, G.; Qin, S. Exogenous spermidine alleviated Low-Temperature damage by affecting polyamine metabolism and antioxidant levels in apples. Plants 2024, 13, 1100. [Google Scholar] [CrossRef]
- Bailly, C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 2019, 476, 3019–3032. [Google Scholar] [CrossRef]
- Kurek, K.; Plitta-Michalak, B.; Ratajczak, E. Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. Plants 2019, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Lepiniec, L.; Devic, M.; Roscoe, T.; Bouyer, D.; Zhou, D.X.; Boulard, C.; Baud, S.; Dubreucq, B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reprod. 2018, 31, 291–307. [Google Scholar] [CrossRef] [PubMed]
- To, A.; Valon, C.; Savino, G.; Guilleminot, J.; Devic, M.; Giraudat, J.; Parcy, F. A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 2006, 18, 1642–1651. [Google Scholar] [CrossRef]
- Smirnova, O.A.; Bartosch, B.; Zakirova, N.F.; Kochetkov, S.N.; Ivanov, A.V. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int. J. Mol. Sci. 2018, 19, 1219. [Google Scholar] [CrossRef]
- Pandey, S.; Fartyal, D.; Agarwal, A.; Shukla, T.; James, D.; Kaul, T.; Negi, Y.K.; Arora, S.; Reddy, M.K. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase. Front. Plant Sci. 2017, 8, 581. [Google Scholar] [CrossRef]
- Kong, L.; Huo, H.; Mao, P. Antioxidant response and related gene expression in aged oat seed. Front. Plant Sci. 2015, 6, 158. [Google Scholar] [CrossRef]
- Barróco, R.M.; Van Poucke, K.; Bergervoet, J.H.; De Veylder, L.; Groot, S.P.; Inze, D.; Engler, G. The Role of the Cell Cycle Machinery in Resumption of Postembryonic Development. Plant Physiol. 2005, 13, 7127–7140. [Google Scholar] [CrossRef]
- Mironov, V.; De Veylder, L.; Van Montagu, M.; Inzé, D. Cyclin-Dependent Kinases and Cell Division in Plants—The Nexus. Plant Cell 1999, 11, 509–521. [Google Scholar]
- Sanz, L.; Dewitte, W.; Forzani, C.; Patell, F.; Nieuwland, J.; Wen, B.; Quelhas, P.; De Jager, S.; Titmus, C.; Campilho, A.; et al. The Arabidopsis D-Type Cyclin CYCD2;1 and the Inhibitor ICK2/KRP2 Modulate Auxin-Induced Lateral Root Formation. Plant Cell 2011, 23, 641–660. [Google Scholar] [CrossRef]
- Menges, M.; Hennig, L.; Gruissem, W.; Murray, J.A.H. Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol. Biol. 2003, 53, 423–442. [Google Scholar] [CrossRef]
- Weimer, A.K.; Biedermann, S.; Harashima, H.; Roodbarkelari, F.; Takahashi, N.; Foreman, J.; Guan, Y.; Pochon, G.; Heese, M.; Van Damme, D.; et al. The plant-specific CDKB 1-CYCB 1 complex mediates homologous recombination repair in Arabidopsis. EMBO J. 2016, 35, 2068–2086. [Google Scholar] [CrossRef] [PubMed]
- Waterworth, W.M.; Masnavi, G.; Bhardwaj, R.M.; Jiang, Q.; Bray, C.M.; West, C.E. A plant DNA ligase is an important determinant of seed longevity. Plant J. 2010, 63, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Taie, H.A.A.; El-Yazal, M.A.S.; Ahmed, S.M.A.; Rady, M.M. Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environ. Sci. Pollut. Res. 2019, 26, 22338–22350. [Google Scholar] [CrossRef]
Gene | Oligonucleotide Forward Sequences | Oligonucleotide Reverse Sequences |
---|---|---|
Tub | 5′ TTTGCTCCTCTTACATCCCG 3′ | 5′ GCAGCACACATCATGTTTT 3′ |
ABI3 | 5′ CGC AGA TGA TCC CAA TGG TG 3′ | 5′ CCA AGA CTC CCC ACA TCA CT 3′ |
FUS3 | 5′ GGATGCCCAGACAGAGGA 3′ | 5′ AGG TGT GTC TCG GCT GCT 3′ |
SPDS1 | 5′ GTGCTCCTCCTCCTCTTTC 3′ | 5′ AATGCAACTCCATCACCGAC 3′ |
SPMS | 5′ GTGGTGATGGCGGTGTTC 3′ | 5′ CCC ACA TGA AGT TGG ACCC 3′ |
APX | 5′ AGC GTT CTG GAT TTG AGG GA 3′ | 5′ GCA AAC CCA AGC TCT GAG AG 3′ |
CycB1 | 5′ GCTGCTGGTGTTGATGGAGT 3′ | 5′ ACCTCTTCACTATCGGGGCT 3′ |
CDKA1 | 5′ AGGGGATTCGGAGATTGAT 3′ | 5′ TCTTGAAGTCGGGCAAAGAA 3′ |
CycD2 | 5′AACCAGGCAGCCAAAACCAA 3′ | 5′ GCCACAGCCCACGAATCATT 3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaonkar, S.S.; Ciceri, L.; Romelli, M.; Pagano, A.; Giovannelli, A.; Chiarabaglio, P.M.; Balestrazzi, A.; Macovei, A. Spermidine Treatments Improve Germination of Long-Term Stored Seeds: A Case Study of Populus alba Clone ‘Villafranca’. Seeds 2025, 4, 25. https://doi.org/10.3390/seeds4020025
Gaonkar SS, Ciceri L, Romelli M, Pagano A, Giovannelli A, Chiarabaglio PM, Balestrazzi A, Macovei A. Spermidine Treatments Improve Germination of Long-Term Stored Seeds: A Case Study of Populus alba Clone ‘Villafranca’. Seeds. 2025; 4(2):25. https://doi.org/10.3390/seeds4020025
Chicago/Turabian StyleGaonkar, Shraddha Shridhar, Lorenzo Ciceri, Matteo Romelli, Andrea Pagano, Alessio Giovannelli, Pier Mario Chiarabaglio, Alma Balestrazzi, and Anca Macovei. 2025. "Spermidine Treatments Improve Germination of Long-Term Stored Seeds: A Case Study of Populus alba Clone ‘Villafranca’" Seeds 4, no. 2: 25. https://doi.org/10.3390/seeds4020025
APA StyleGaonkar, S. S., Ciceri, L., Romelli, M., Pagano, A., Giovannelli, A., Chiarabaglio, P. M., Balestrazzi, A., & Macovei, A. (2025). Spermidine Treatments Improve Germination of Long-Term Stored Seeds: A Case Study of Populus alba Clone ‘Villafranca’. Seeds, 4(2), 25. https://doi.org/10.3390/seeds4020025