Previous Issue
Volume 3, March
 
 

SynBio, Volume 3, Issue 2 (June 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 1754 KiB  
Article
Functional and Evolutionary Characterization of the NSP6 Protein in SARS-CoV-2 Omicron Variants
by Joyhare Barbosa Souza and Samir Mansour Moraes Casseb
SynBio 2025, 3(2), 7; https://doi.org/10.3390/synbio3020007 - 27 Apr 2025
Viewed by 100
Abstract
The SARS-CoV-2 virus, which causes COVID-19, has rapidly evolved, producing highly transmissible variants like Omicron. Non-structural protein 6 (NSP6) is essential for viral replication and immune evasion. This study analyzed the NSP6 protein of the Omicron variant, focusing on conserved motifs, mutations, and [...] Read more.
The SARS-CoV-2 virus, which causes COVID-19, has rapidly evolved, producing highly transmissible variants like Omicron. Non-structural protein 6 (NSP6) is essential for viral replication and immune evasion. This study analyzed the NSP6 protein of the Omicron variant, focusing on conserved motifs, mutations, and residual properties to better understand its structure, function, and potential for immune evasion. Sequences from humans in South America were obtained from GISAID and aligned using Clustal Omega 1.2.4, with mutations identified by a Python 3 algorithm and conserved motifs detected using the MEME tool. Sequence diversity was assessed with Shannon’s entropy, while hydrophilicity, flexibility, accessibility, and antigenicity were analyzed using EMBOSS PEPSTATS and Expasy’s ProtScale tools. Phylogenetic analysis was performed with IQ-TREE software. Analysis of 161 NSP6 protein sequences revealed significant divergence from the reference sequence, with mutations proximal to conserved regions indicating potential functional and structural changes. The analysis also identified distinct hydrophobic and hydrophilic regions, with specific amino acid positions showing high flexibility and antigenicity. Phylogenetic analysis identified three clades with varying degrees of similarity to the reference sequence. This comprehensive study of the NSP6 protein in the Omicron variant provides insights into its role in viral replication and immune evasion, contributing to the development of targeted interventions against COVID-19. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop