Multialgorithm-Based Docking Reveals Imidazolidinyl Urea as a Multitargeted Inhibitor for Lung Cancer †
Abstract
:1. Introduction
2. Methods
2.1. Protein Preparation and Ligand Library Collection and Preparation
2.2. Glide Grid Generation and Multitargeted Molecular Docking
2.3. ADMET and Interaction Fingerprinting Analysis
3. Results and Discussion
3.1. Interaction Analysis
3.2. ADMET and Interaction Pattern Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, S.; Bano, N.; Qazi, S.; Yadav, M.K.; Ahmad, N.; Raza, K. Multitargeted molecular dynamic understanding of butoxypheser against SARS-CoV-2: An in silico study. Nat. Prod. Commun. 2022, 17, 1934578X221115499. [Google Scholar] [CrossRef]
- Ahmad, S.; Pasha Km, M.; Raza, K.; Rafeeq, M.M.; Habib, A.H.; Eswaran, M.; Yadav, M.K. Reporting dinaciclib and theodrenaline as a multitargeted inhibitor against SARS-CoV-2: An in-silico study. J. Biomol. Struct. Dyn. 2022, 1–11. [Google Scholar] [CrossRef]
- Alghamdi, Y.S.; Mashraqi, M.M.; Alzamami, A.; Alturki, N.A.; Ahmad, S.; Alharthi, A.A.; Alshamrani, S.; Asiri, S.A. Unveiling the multitargeted potential of N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) against SARS CoV-2: A virtual screening and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2022, 1–10. [Google Scholar] [CrossRef]
- Alzamami, A.; Alturki, N.A.; Alghamdi, Y.S.; Ahmad, S.; Alshamrani, S.; Asiri, S.A.; Mashraqi, M.M. Hemi-Babim and Fenoterol as Potential Inhibitors of MPro and Papain-like Protease against SARS-CoV-2: An In-Silico Study. Medicina 2022, 58, 515. [Google Scholar] [CrossRef]
- Chrysostomou, S.; Roy, R.; Prischi, F.; Thamlikitkul, L.; Chapman, K.L.; Mufti, U.; Peach, R.; Ding, L.; Hancock, D.; Moore, C.; et al. Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer. Sci. Transl. Med. 2021, 13, eaba4627. [Google Scholar] [CrossRef]
- Khan, N.; Shah, P.P.; Ban, D.; Trigo-Mouriño, P.; Carneiro, M.G.; DeLeeuw, L.; Dean, W.L.; Trent, J.O.; Beverly, L.J.; Konrad, M.; et al. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J. Biol. Chem. 2019, 294, 11920–11933. [Google Scholar] [CrossRef]
- Lawrie, A.M.; Noble, M.E.; Tunnah, P.; Brown, N.R.; Johnson, L.N.; Endicott, J.A. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat. Struct. Biol. 1997, 4, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Niefind, K.; Guerra, B.; Ermakowa, I.; Issinger, O. Crystal structure of human protein kinase CK2: Insights into basic properties of the CK2 holoenzyme. EMBO J. 2001, 20, 5320–5331. [Google Scholar] [CrossRef] [PubMed]
- Eck, M.J.; Sprang, S.R. The structure of tumor necrosis factor-α at 2.6 Å resolution: Implications for receptor binding. J. Biol. Chem. 1989, 264, 17595–17605. [Google Scholar] [CrossRef]
- Rose, P.W.; Beran, B.; Bi, C.; Bluhm, W.F.; Dimitropoulos, D.; Goodsell, D.S.; Prlic, A.; Quesada, M.; Quinn, G.B.; Westbrook, J.D.; et al. The RCSB Protein Data Bank: Redesigned web site and web services. Nucleic Acids Res. 2010, 39 (Suppl. S1), D392–D401. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release. 1: Maestro; Schrödinger, LLC: New York, NY, USA, 2017; p. 2017. [Google Scholar]
- Schrödinger Release. 4: Protein Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, USA, 2016; p. 2018-3. [Google Scholar]
- Schrödinger Release. 1: Epik; Schrödinger Release: New York, NY, USA, 2020; p. 1. [Google Scholar]
- Schrödinger Release. 1: Prime; Schrödinger, LLC: New York, NY, USA, 2020. [Google Scholar]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Ramlal, A.; Ahmad, S.; Kumar, L.; Khan, F.N.; Chongtham, R. From Molecules to Patients: The Clinical Applications of Biological Databases and Electronic Health Records. In Translational Bioinformatics in Healthcare and Medicine; Academic Press: Cambridge, MA, USA, 2021; pp. 107–125. [Google Scholar]
- Schrödinger Release. 2: LigPrep; Schrödinger, LLC: New York, NY, USA, 2017. [Google Scholar]
- Schrödinger Release. 4: Glide; Schrödinger, LLC: New York, NY, USA, 2018; p. 757. [Google Scholar]
- Schrödinger Release. 1: QikProp; Schrödinger, LLC: New York, NY, USA, 2020; p. 329. [Google Scholar]
S. No. | PDB ID | Docking Score | MM\GBSA dG Bind | Rotatable Bonds | Evdw | Ecoul |
---|---|---|---|---|---|---|
1 | 6G77 | −6.723 | −34.67 | 12 | −27.324 | −22.436 |
2 | 6NUI | −7.147 | −48.55 | 12 | −34.682 | −10.659 |
3 | 1AQ1 | −7.945 | −42.95 | 12 | −45.501 | −13.995 |
4 | 1JWH | −6.635 | −42.82 | 12 | −42.71 | −18.582 |
5 | 1TNF | −5.422 | −38.16 | 12 | −29.631 | −14.062 |
Descriptor | Imidazolidinyl Urea | Descriptor | Imidazolidinyl Urea |
---|---|---|---|
#stars | 5 | QPlogS | −1.348 |
#amine | 0 | CIQPlogS | −2.753 |
#amidine | 0 | QPlogHERG | −1.409 |
#acid | 0 | QPPCaco | 0.381 |
#amide | 2 | QPlogBB | −3.985 |
#rotor | 8 | QPPMDCK | 0.242 |
#rtvFG | 0 | QPlogKp | −8.64 |
CNS | −2 | IP(eV) | 10.085 |
mol MW | 388.296 | EA(eV) | 0.341 |
dipole | 13.717 | #metab | 4 |
SASA | 590.656 | QPlogKhsa | −1.17 |
FOSA | 162.601 | HumanOralAbsorption | 1 |
FISA | 428.055 | % HumanOralAbsorption | 0 |
PISA | 0 | SAfluorine | 0 |
WPSA | 0 | SAamideO | 44.64 |
volume | 1034.87 | PSA | 289.333 |
donorHB | 2.5 | #NandO | 16 |
accptHB | 8.9 | RuleOfFive | 2 |
dip^2/V | 0.1818131 | RuleOfThree | 1 |
ACxDN^.5/SA | 0.0238246 | #ringatoms | 10 |
glob | 0.8376977 | #in34 | 0 |
QPpolrz | 30.125 | #in56 | 10 |
QPlogPC16 | 11.394 | #noncon | 2 |
QPlogPoct | 21.625 | #nonHatm | 27 |
QPlogPw | 18.019 | Jm | 0 |
QPlogPo/w | −2.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.; Raza, K. Multialgorithm-Based Docking Reveals Imidazolidinyl Urea as a Multitargeted Inhibitor for Lung Cancer. Med. Sci. Forum 2023, 21, 36. https://doi.org/10.3390/ECB2023-14138
Ahmad S, Raza K. Multialgorithm-Based Docking Reveals Imidazolidinyl Urea as a Multitargeted Inhibitor for Lung Cancer. Medical Sciences Forum. 2023; 21(1):36. https://doi.org/10.3390/ECB2023-14138
Chicago/Turabian StyleAhmad, Shaban, and Khalid Raza. 2023. "Multialgorithm-Based Docking Reveals Imidazolidinyl Urea as a Multitargeted Inhibitor for Lung Cancer" Medical Sciences Forum 21, no. 1: 36. https://doi.org/10.3390/ECB2023-14138
APA StyleAhmad, S., & Raza, K. (2023). Multialgorithm-Based Docking Reveals Imidazolidinyl Urea as a Multitargeted Inhibitor for Lung Cancer. Medical Sciences Forum, 21(1), 36. https://doi.org/10.3390/ECB2023-14138