Previous Issue
Volume 5, March
 
 

Solar, Volume 5, Issue 2 (June 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
1 pages, 135 KiB  
Correction
Correction: Topa Gavilema et al. Modeling and Energy Management of a Microgrid Based on Predictive Control Strategies. Solar 2023, 3, 62–73
by Alex Omar Topa Gavilema, Juan D. Gil, José Domingo Álvarez Hervás, José Luis Torres Moreno and Manuel Pérez García
Solar 2025, 5(2), 21; https://doi.org/10.3390/solar5020021 - 16 May 2025
Abstract
Following publication, the Editorial Office became aware that the original article [...] Full article
1 pages, 135 KiB  
Correction
Correction: Marotta et al. Towards Positive Energy Districts: Energy Renovation of a Mediterranean District and Activation of Energy Flexibility. Solar 2023, 3, 253–282
by Ilaria Marotta, Thibault Péan, Francesco Guarino, Sonia Longo, Maurizio Cellura and Jaume Salom
Solar 2025, 5(2), 20; https://doi.org/10.3390/solar5020020 - 15 May 2025
Viewed by 33
Abstract
Following publication, the Editorial Office became aware that the original article [...] Full article
1 pages, 133 KiB  
Correction
Correction: Fernández-Reche et al. Measuring Concentrated Solar Radiation Flux in a Linear Fresnel-Type Solar Collector. Solar 2022, 2, 401–413
by Jesús Fernández-Reche, Loreto Valenzuela and Diego Pulido-Iparraguirre
Solar 2025, 5(2), 19; https://doi.org/10.3390/solar5020019 - 14 May 2025
Viewed by 63
Abstract
Following publication, the Editorial Office became aware that the original article [...] Full article
1 pages, 134 KiB  
Correction
Correction: Estremera-Pedriza et al. Optical Characterization of a New Facility for Materials Testing under Concentrated Wavelength-Filtered Solar Radiation Fluxes. Solar 2023, 3, 76–86
by Noelia Estremera-Pedriza, Jesús Fernández-Reche and Jose A. Carballo
Solar 2025, 5(2), 18; https://doi.org/10.3390/solar5020018 - 14 May 2025
Viewed by 54
Abstract
Following publication, the Editorial Office became aware that the original article [...] Full article
20 pages, 13013 KiB  
Article
Impact of Surface Modification on Performance of Solar Concentrators
by Nikolaos Skandalos and Gudrun Kocher-Oberlehner
Solar 2025, 5(2), 17; https://doi.org/10.3390/solar5020017 - 6 May 2025
Viewed by 217
Abstract
This study analyzes the impact of powder-blasted surface modification on the performance of non-imaging solar concentrators and evaluates a ray-tracing simulation approach to virtual solar power measurements. Powder blasting was applied to poly(methyl methacrylate) (PMMA) sheets to create a rough, Lambertian-like scattering surface, [...] Read more.
This study analyzes the impact of powder-blasted surface modification on the performance of non-imaging solar concentrators and evaluates a ray-tracing simulation approach to virtual solar power measurements. Powder blasting was applied to poly(methyl methacrylate) (PMMA) sheets to create a rough, Lambertian-like scattering surface, enhancing light trapping and total internal reflection. The effects of this modification were systematically assessed using optical transmission spectroscopy, angular scattering measurements, and solar cell efficiency characterization under standard AM1.5 illumination. The results show that surface roughening significantly improves light redirection toward the concentrator’s edge, enhancing solar cell performance. OptisWorks ray-tracing simulations were employed to model the concentrator’s optical behavior, demonstrating strong agreement (within 5–10% deviation) with experimental data. These findings confirm that surface modification is crucial in optimizing concentrator efficiency and establishing ray tracing as a reliable tool for virtual performance evaluation in photovoltaic applications. Full article
Show Figures

Figure 1

19 pages, 3724 KiB  
Article
Computational Fluid Dynamics–Discrete Element Method Numerical Simulation of Hydrothermal Liquefaction of Sewage Sludge in a Tube Reactor as a Linear Fresnel Solar Collector
by Artur Wodołażski
Solar 2025, 5(2), 16; https://doi.org/10.3390/solar5020016 - 28 Apr 2025
Viewed by 446
Abstract
This paper discusses the thermal and exergy efficiency analysis of the hydrothermal liquefaction (HTL) process, which converts sewage sludge into biocrude oil in a continuous plug–flow reactor using a linear Fresnel solar collector. The investigation focuses on the influence of key operational parameters, [...] Read more.
This paper discusses the thermal and exergy efficiency analysis of the hydrothermal liquefaction (HTL) process, which converts sewage sludge into biocrude oil in a continuous plug–flow reactor using a linear Fresnel solar collector. The investigation focuses on the influence of key operational parameters, including slurry flow rate, temperature, pressure, residence time, and the external heat transfer coefficient, on the overall efficiency of biocrude oil production. A detailed thermodynamic evaluation was conducted using process simulation principles and a kinetic model to assess mass and energy balances within the HTL reaction, considering heat and mass momentum exchange in a multiphase system using UDF. The reactor’s receiver, a copper absorber tube, has a total length of 20 m and is designed in a coiled configuration from the base to enhance heat absorption efficiency. To optimize the thermal performance of biomass conversion in the HTL process, a Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) coupling numerical method approach was employed to investigate improved thermal performance by obtaining a heat source solely through solar energy. This numerical modeling approach allows for an in-depth assessment of heat transfer mechanisms and fluid-particle interactions, ensuring efficient energy utilization and sustainable process development. The findings contribute to advancing solar-driven HTL technologies by maximizing thermal efficiency and minimizing external energy requirements. Full article
Show Figures

Graphical abstract

35 pages, 411 KiB  
Article
Model Predictive Control of Electric Water Heaters in Individual Dwellings Equipped with Grid-Connected Photovoltaic Systems
by Oumaima Laguili, Julien Eynard, Marion Podesta and Stéphane Grieu
Solar 2025, 5(2), 15; https://doi.org/10.3390/solar5020015 - 25 Apr 2025
Viewed by 199
Abstract
The residential sector is energy-consuming and one of the biggest contributors to climate change. In France, the adoption of photovoltaics (PV) in that sector is accelerating, which contributes to both increasing energy efficiency and reducing greenhouse gas (GHG) emissions, even though the technology [...] Read more.
The residential sector is energy-consuming and one of the biggest contributors to climate change. In France, the adoption of photovoltaics (PV) in that sector is accelerating, which contributes to both increasing energy efficiency and reducing greenhouse gas (GHG) emissions, even though the technology faces several issues. One issue that slows down the adoption of the technology is the “duck curve” effect, which is defined as the daily variation of net load derived from a mismatch between power consumption and PV power generation periods. As a possible solution for addressing this issue, electric water heaters (EWHs) can be used in residential building as a means of storing the PV power generation surplus in the form of heat in a context where users’ comfort—the availability of domestic hot water (DHW)—has to be guaranteed. Thus, the present work deals with developing model-based predictive control (MPC) strategies—nonlinear/linear MPC (MPC/LMPC) strategies are proposed—to the management of EWHs in individual dwellings equipped with grid-connected PV systems. The aim behind developing such strategies is to improve both the PV power generation self-consumption rate and the economic gain, in comparison with rule-based (RB) control strategies. Inasmuch as DHW and power demand profiles are needed, data were collected from a panel of users, allowing the development of profiles based on a quantile regression (QR) approach. The simulation results (over 6 days) highlight that the MPC/LMPC strategies outperform the RB strategies, while guaranteeing users’ comfort (i.e., the availability of DHW). The MPC/LMPC strategies allow for a significant increase in both the economic gain (up to 2.70 EUR) and the PV power generation self-consumption rate (up to 14.30%ps), which in turn allows the CO2 emissions to be reduced (up to 3.92 kg CO2.eq). In addition, these results clearly demonstrate the benefits of using EWHs to store the PV power generation surplus, in the context of producing DHW in residential buildings. Full article
Show Figures

Figure 1

20 pages, 14556 KiB  
Article
Design and Improvement of an Automated Tool for Quality Control and Performance Assessment of Photovoltaic Modules
by Alain Foutche Tchouli, Stephane Ndiya Ngasop, Jean Hilaire Tchami, Claude Bertin Nzoundja Fapi and Hyacinthe Tchakounté
Solar 2025, 5(2), 14; https://doi.org/10.3390/solar5020014 - 16 Apr 2025
Viewed by 246
Abstract
Photovoltaic (PV) systems are at the heart of the energy transition, providing an essential source of clean, renewable energy for applications such as solar pumping, which is essential for irrigation and rural water supply. However, their efficiency depends directly on the quality and [...] Read more.
Photovoltaic (PV) systems are at the heart of the energy transition, providing an essential source of clean, renewable energy for applications such as solar pumping, which is essential for irrigation and rural water supply. However, their efficiency depends directly on the quality and performance of the modules, which are often affected by defects or unfavorable environmental conditions. This article presents the development of an innovative automated tool designed for advanced characterization of PV modules by analyzing key parameters such as voltage and current. The system integrates measurement sensors (voltage, current, temperature, etc.), an Arduino Mega board and an SD card, enabling real-time data collection, processing, and recording under various environmental conditions. The results of the experimental tests demonstrate a significant improvement in the PV panel selection process, ensuring optimized choices at the time of purchase and rigorous monitoring during operation. This innovation contributes to maximizing energy performance and extending panel longevity, reinforcing their role in the transition to a sustainable energy model. Full article
Show Figures

Figure 1

13 pages, 3123 KiB  
Article
Loss Analysis of P3 Laser Patterning of Perovskite Solar Cells via Hyperspectral Photoluminescence Imaging
by Christof Schultz, Markus Fenske, Nicolas Otto, Laura-Isabelle Dion-Bertrand, Guillaume Gélinas, Stéphane Marcet, Janardan Dagar, Rutger Schlatmann, Eva Unger and Bert Stegemann
Solar 2025, 5(2), 13; https://doi.org/10.3390/solar5020013 - 11 Apr 2025
Viewed by 370
Abstract
Upscaling perovskite solar cells and modules requires precise laser patterning for series interconnection and spatial characterization of cell parameters to understand laser–material interactions and their impact on performance. This study investigates the use of nanosecond (ns) and picosecond (ps) laser pulses at varying [...] Read more.
Upscaling perovskite solar cells and modules requires precise laser patterning for series interconnection and spatial characterization of cell parameters to understand laser–material interactions and their impact on performance. This study investigates the use of nanosecond (ns) and picosecond (ps) laser pulses at varying fluences for the P3 patterning step of perovskite solar cells. Hyperspectral photoluminescence (PL) imaging was employed to map key parameters such as optical bandgap energy, Urbach energy, and shunt resistance. The mappings were correlated with electrical measurements, revealing that both ns and ps lasers can be utilized for effective series interconnections with minimal performance losses at optimized fluences. Our findings provide a deeper understanding of fluence-dependent effects in P3 patterning. Moreover, the results demonstrate that the process window is robust, allowing for reasonable cell performance even with deviations from optimal parameters. This robustness, coupled with the scalability of the laser patterning process, emphasize its suitability for industrial module production. Full article
(This article belongs to the Special Issue Developments in Perovskite Solar Cells)
Show Figures

Figure 1

Previous Issue
Back to TopTop