Previous Issue
Volume 4, December
 
 

Solar, Volume 5, Issue 1 (March 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 12745 KiB  
Article
Characterization of a Densely Packed Photovoltaic Array with RXX Homogenizer in a High-Flux Solar Furnace
by Ernesto Anguera Romero, Nidia Aracely Cisneros-Cárdenas and Claudio A. Estrada Gasca
Solar 2025, 5(1), 5; https://doi.org/10.3390/solar5010005 (registering DOI) - 15 Feb 2025
Abstract
A theoretical and experimental evaluation was conducted on a prototype radiative flux homogenizer (HOFRAC) specifically designed for the Solar Furnace at Instituto de Energías Renovables (HoSIER) of Universidad Nacional Autónoma de México. The development of HOFRAC included three versions (HOFRAC-PRO, HOFRAC-PRI, and HOFRAC-PRIK); [...] Read more.
A theoretical and experimental evaluation was conducted on a prototype radiative flux homogenizer (HOFRAC) specifically designed for the Solar Furnace at Instituto de Energías Renovables (HoSIER) of Universidad Nacional Autónoma de México. The development of HOFRAC included three versions (HOFRAC-PRO, HOFRAC-PRI, and HOFRAC-PRIK); each iteration incorporated improvements based on theoretical modeling and experimental results. Evaluations were performed using ray-tracing simulations and experimental tests capturing radiative flux distribution images. The last two versions were used to characterize a densely packed photovoltaic array operated in the solar furnace. Some results of this study show that misaligned mirrors in the furnace were identified as the main problem in achieving a high flux uniformity degree for photovoltaic concentration applications. Full article
Show Figures

Figure 1

31 pages, 4525 KiB  
Review
From Waste to Resource: Exploring the Current Challenges and Future Directions of Photovoltic Solar Cell Recycling
by Ghadeer Badran and Vlado K. Lazarov
Solar 2025, 5(1), 4; https://doi.org/10.3390/solar5010004 - 11 Feb 2025
Abstract
The rapid proliferation of photovoltaic (PV) solar cells as a clean energy source has raised significant concerns regarding their end-of-life (EoL) management, particularly in terms of sustainability and waste reduction. This review comprehensively examines challenges, opportunities, and future directions in the recycling of [...] Read more.
The rapid proliferation of photovoltaic (PV) solar cells as a clean energy source has raised significant concerns regarding their end-of-life (EoL) management, particularly in terms of sustainability and waste reduction. This review comprehensively examines challenges, opportunities, and future directions in the recycling of PV solar cells, focusing on mechanical, thermal, and chemical recycling techniques. It also evaluates the scalability and practicality of these methods to different PV technologies, including crystalline silicon and thin-film modules. It explores the economic and environmental impacts of these processes, highlighting the necessity of developing robust recycling infrastructure and innovative technologies to address the anticipated surge in PV waste. Additionally, this review discusses the critical role of government policies and industry collaboration in overcoming the barriers to effective recycling. Furthermore, the importance of integrating design-for-recyclability principles into PV module development is emphasized, as it can significantly enhance material recovery and process efficiency. By advancing these strategies, the solar industry can achieve greater sustainability, reduce resource depletion, and mitigate environmental risks, thereby ensuring the long-term viability of solar energy as a key component of global renewable energy initiatives. Full article
Show Figures

Figure 1

17 pages, 3344 KiB  
Article
Co-Location Potential of Floating PV with Hydropower Plants: Case Study in Ecuador
by Carlos D. Rodríguez-Gallegos, Oktoviano Gandhi, César A. Rodríguez-Gallegos and Manuel S. Alvarez-Alvarado
Solar 2025, 5(1), 3; https://doi.org/10.3390/solar5010003 - 4 Feb 2025
Abstract
This study explores the potential for co-locating floating photovoltaics (FPVs) with existing hydropower plants (HPPs) in Ecuador. Ecuador’s heavy reliance on hydropower for electricity generation, combined with recent blackouts caused by prolonged dry seasons, underscores the importance of diversifying energy sources. The integration [...] Read more.
This study explores the potential for co-locating floating photovoltaics (FPVs) with existing hydropower plants (HPPs) in Ecuador. Ecuador’s heavy reliance on hydropower for electricity generation, combined with recent blackouts caused by prolonged dry seasons, underscores the importance of diversifying energy sources. The integration of FPVs with HPPs offers a promising opportunity to enhance energy security by reducing dependency on a single energy source and improving economic, electrical, and environmental outcomes. In this paper, we assess all HPPs in Ecuador and quantify the potential performance of FPV systems when installed at their sites. Our results show that FPV systems can not only contribute additional electricity to the grid but also improve HPP performance by reducing water evaporation from reservoirs and maintaining generation capacity during dry seasons, when solar irradiation is typically higher. To model the energy production, yield, and performance of the FPV systems, we applied RINA’s methodology to estimate representative weather conditions for each site and simulate FPV performance, accounting for system design loss factors. Additionally, we calculated the water savings resulting from FPV installation. Our findings reveal that, out of approximately 70 HPPs in Ecuador, 11 present favorable conditions for large-scale FPV deployment. Among these, Cumbayá HPP (40 MW) exhibited the most suitable conditions, supporting a maximum FPV capacity of 17 MWp. Marcel Laniado de Wind HPP (213 MW) and Mazar HPP (170 MW) were also identified as optimal candidates, each with potential FPV capacities equal to their installed HPP capacities. While this study primarily aims to provide scientific evidence on the potential of FPV-HPP co-location, the results and methodology can also guide Ecuadorian government authorities and investors in adopting FPV technology to strengthen the country’s energy infrastructure. Full article
Show Figures

Figure 1

26 pages, 5496 KiB  
Article
A Tool for a Fast and Accurate Evaluation of the Energy Production of Bifacial Photovoltaic Modules
by Vincenzo d’Alessandro, Santolo Daliento, Mahmoud Dhimish and Pierluigi Guerriero
Solar 2025, 5(1), 2; https://doi.org/10.3390/solar5010002 - 16 Jan 2025
Viewed by 478
Abstract
In this work, we propose a simulation tool designed for the analysis and optimization of bifacial photovoltaic (PV) modules, which are currently under the spotlight in the renewable energy scenario. The tool is conceived to support researchers and engineers by providing fast and [...] Read more.
In this work, we propose a simulation tool designed for the analysis and optimization of bifacial photovoltaic (PV) modules, which are currently under the spotlight in the renewable energy scenario. The tool is conceived to support researchers and engineers by providing fast and accurate predictions of the PV module yield under various operating and environmental conditions. For a chosen geographical site, the impact of module orientation, tilt, albedo, sky conditions, ambient temperature, and so on can be effortlessly determined. In case of nonuniformity across the cells dictated by localized architectural shading, dirt, bird drops, and defects, a circuit-based cell-level approach can be activated to compute the module production. An extensive simulation campaign is performed by assuming that the panels are installed in Naples without loss of generality. Results are shown to give detailed insights into the performance of bifacial modules, thus providing unambiguous guidelines for their correct installation. Further analyses are conducted to demonstrate the tool capability to quantify the detrimental influence of a poorly-irradiated cell on the backside, as well as of cracked cells. Full article
Show Figures

Figure 1

13 pages, 4642 KiB  
Article
Investigation of Grid-Tied Photovoltaic Power Plant on Medium-Voltage Feeder: Palestine Polytechnic University Case Study
by Maher Maghalseh, Nassim Iqteit, Haitham Alqadi and Salman Ajib
Solar 2025, 5(1), 1; https://doi.org/10.3390/solar5010001 - 16 Jan 2025
Viewed by 456
Abstract
The conventional unidirectional power flow model of centralized energy grids is being revolutionized by integrating renewable energy sources, particularly photovoltaic (PV) systems, to meet the escalating demand for electricity while ensuring sustainability. However, this integration challenges the efficiency and performance of power systems [...] Read more.
The conventional unidirectional power flow model of centralized energy grids is being revolutionized by integrating renewable energy sources, particularly photovoltaic (PV) systems, to meet the escalating demand for electricity while ensuring sustainability. However, this integration challenges the efficiency and performance of power systems and impacts various parameters, including power quality, voltage profile, power factor, power loss, and load flow. This paper investigates the effects and performance of a grid-tied PV system integrated into the conventional power system, focusing on the Palestine Polytechnic University (PPU) 230 kWp PV plant as a real-world case study. Simulations conducted using ETAP software revealed that integrating the PV system resulted in a slight increase in the voltage level at the main bus of the PPU feeder, with an increase of 0.03% at the medium-voltage level. Additionally, the voltage level at the Point of Common Coupling (PCC) increased by 0.51% with a PV penetration level of only 14.7%, which remains within the acceptable range according to IEEE 1547 standards. These findings underscore the minimal impact of the PV system on the voltage profile and highlight the system’s ability to maintain power quality and efficiency even with the addition of renewable energy sources. The daily load profiles were studied with and without the PV system, providing a comprehensive analysis of its effects on the grid. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop