Policies for Promising Prospects of Photovoltaics
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Establishing a New Commercial Technology in 2025
3.2. Improving the Technology and Consolidating Its Market Share by 2035
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Net Zero Tracker. Data Explorer. 2025. Available online: https://zerotracker.net/ (accessed on 28 February 2025).
- IEA-PVPS. Snapshot 2023. Available online: https://iea-pvps.org/snapshot-reports/snapshot-2023/ (accessed on 1 September 2024).
- pv Magazine International. Global Installed PV Capacity Tops 2 TW; pv Magazine International, 2024; Available online: https://www.pv-magazine.com/2024/11/13/global-installed-pv-capacity-tops-2-tw/ (accessed on 1 September 2024).
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar photovoltaics is ready to power a sustainable future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Haegel, N.M.; Verlinden, P.; Victoria, M.; Altermatt, P.; Atwater, H.; Barnes, T.; Breyer, C.; Case, C.; De Wolf, S.; Deline, C.; et al. Photovoltaics at multi-terawatt scale: Waiting is not an option. Science 2023, 380, 39–42. [Google Scholar] [CrossRef] [PubMed]
- pv Magazine International. Strong Growth Predicted for Middle Eastern Solar PV; 2021; Available online: https://www.pv-magazine.com/2021/06/25/strong-growth-predicted-for-middle-eastern-solar-pv/ (accessed on 1 September 2024).
- SolarQuarter. JinkoPower and EDF Renewables Consortium Sign the Power Purchase Agreement for the World’s Single Largest Solar Project in Abu Dhabi; SolarQuarter: Navi Mumbai, India, 2020. [Google Scholar]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Holzhey, P.; Prettl, M.; Collavini, S.; Chang, N.L.; Saliba, M. Toward commercialization with lightweight, flexible perovskite solar cells for residential photovoltaics. Joule 2023, 7, 257–271. [Google Scholar] [CrossRef]
- Shen, W.; Chen, X.; Qiu, J.; Hayward, J.A.; Sayeef, S.; Osman, P.; Meng, K.; Dong, Z.Y. A comprehensive review of variable renewable energy levelized cost of electricity. Renew. Sustain. Energy Rev. 2020, 133, 110301. [Google Scholar] [CrossRef]
- McGovern, L.; Garnett, E.C.; Veenstra, S.; van der Zwaan, B. A techno-economic perspective on rigid and flexible perovskite solar modules. Sustain. Energy Fuels. 2023, 7, 5259–5270. [Google Scholar] [CrossRef] [PubMed]
- Fraunhofer ISE. Levelized Cost of Electricity. Renewable Energy Technologies; Fraunhofer ISE: Freiburg, Germany, 2021. [Google Scholar]
- Haegel, N.M.; Atwater, H.; Barnes, T.; Breyer, C.; Burrell, A.; Chiang, Y.M.; De Wolf, S.; Dimmler, B.; Feldman, D.; Glunz, S.; et al. Terawatt-scale photovoltaics: Transform global energy Improving costs and scale reflect looming opportunities. Science 2019, 364, 836–838. [Google Scholar] [CrossRef] [PubMed]
- Rubin, E.S.; Azevedo, I.M.L.; Jaramillo, P.; Yeh, S. A review of learning rates for electricity supply technologies. Energy Policy 2015, 86, 198–218. [Google Scholar] [CrossRef]
- McGovern, L.; Alarcón-Lladó, E.; Garnett, E.C.; Ehrler, B.; van der Zwaan, B. Perovskite Solar Modules for the Residential Sector. ACS Energy Lett. 2023, 8, 4862–4866. [Google Scholar] [CrossRef] [PubMed]
- Fraunhofer ISE. Photovoltaics Report; Fraunhofer ISE: Freiburg, Germany, 2023. [Google Scholar]
- Zafoschnig, L.A.; Nold, S.; Goldschmidt, J.C. The Race for Lowest Costs of Electricity Production: Techno-Economic Analysis of Silicon, Perovskite and Tandem Solar Cells. IEEE J. Photovolt. 2020, 10, 1632–1641. [Google Scholar] [CrossRef]
- Elshurafa, A.M.; Albardi, S.R.; Bigerna, S.; Bollino, C.A. Estimating the learning curve of solar PV balance–of–system for over 20 countries: Implications and policy recommendations. J. Clean. Prod. 2018, 196, 122–134. [Google Scholar] [CrossRef]
- IEA. Solar PV–Analysis; IEA: Singapore, 2022; Available online: https://www.iea.org/energy-system/renewables/solar-pv (accessed on 1 December 2022).
- Correa-Baena, J.P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok SIl McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef] [PubMed]
- Kavlak, G.; McNerney, J.; Trancik, J.E. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 2018, 123, 700–710. [Google Scholar] [CrossRef]
- Mavlonov, A.; Hishikawa, Y.; Kawano, Y.; Negami, T.; Hayakawa, A.; Tsujimura, S.; Okumura, T.; Minemoto, T. Thermal stability test on flexible perovskite solar cell modules to estimate activation energy of degradation on temperature. Sol. Energy Mater. Sol. Cells 2024, 277, 113148. [Google Scholar] [CrossRef]
- Suo, J.; Yang, B.; Mosconi, E. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 2024, 9, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Khenkin, M.V.; Katz, E.A.; Abate, A.; Bardizza, G.; Berry, J.J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Di Carlo, A.; et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 2020, 5, 35–49. [Google Scholar] [CrossRef]
- Moody, N.; Sesena, S.; deQuilettes, D.W.; Dou, B.D.; Swartwout, R.; Buchman, J.T.; Johnson, A.; Eze, U.; Brenes, R.; Johnston, M.; et al. Assessing the Regulatory Requirements of Lead-Based Perovskite Photovoltaics. Joule 2020, 4, 970–974. [Google Scholar] [CrossRef]
- Chen, C.-H.; Cheng, S.-N.; Cheng, L.; Wang, Z.-K.; Liao, L.-S. Toxicity, Leakage, and Recycling of Lead in Perovskite Photovoltaics. Adv. Energy Mater. 2023, 13, 2204144. [Google Scholar] [CrossRef]
- SolarNL. National Dutch PV Research, Innovation and Industry Program [WWW Document]. 2023. Available online: https://www.solarnl.eu/ (accessed on 19 November 2023).
LCOE (EURct/kWh) | In 2025 | In 2035 | c-Si PV (Model/2025) |
---|---|---|---|
Under European irradiation | 15.0 | 10.5 | 11.7 |
Under high irradiation | 7.5 | 5.3 | 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGovern, L.; van der Zwaan, B. Policies for Promising Prospects of Photovoltaics. Solar 2025, 5, 22. https://doi.org/10.3390/solar5020022
McGovern L, van der Zwaan B. Policies for Promising Prospects of Photovoltaics. Solar. 2025; 5(2):22. https://doi.org/10.3390/solar5020022
Chicago/Turabian StyleMcGovern, Lucie, and Bob van der Zwaan. 2025. "Policies for Promising Prospects of Photovoltaics" Solar 5, no. 2: 22. https://doi.org/10.3390/solar5020022
APA StyleMcGovern, L., & van der Zwaan, B. (2025). Policies for Promising Prospects of Photovoltaics. Solar, 5(2), 22. https://doi.org/10.3390/solar5020022