Respiratory Infections in Adults and Inequality: An Analysis of Deaths and Their Socioeconomic Determinants in Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Extraction and Databases
- (I)
- Mortality Information System (SIM)
- (II)
- National Register of Health Establishments (CNES)
- (III)
- Population Projections
- (IV)
- Socio-economic indicators
2.3. Participants
2.4. Procedures and Data Analysis
- The death data were aggregated according to the selected variables from the CD, using Excel’s “pivot table” feature. This way, the total numbers of deaths were obtained, considering each of the variables selected for analysis. The numbers of deaths were organized according to the variables on the death certificates and the infection groups. Deaths of individuals with complete or incomplete primary education, complete or incomplete tertiary education and deaths in hospitals and other health establishments were unified. Data that did not show a record of any of the variables on the death certificate were considered “not informed”. In Brazil, the mixed-race ethnicity does not include people of Asian, indigenous or other ethnicities.
- The total annual number of deaths was calculated for each group of infections and for each CD variable, such as region, sex, age group, ethnicity, level of educational attainment, location, medical care and autopsy.
- The relative frequencies of deaths were calculated for each infection group.
- The annual incidence of deaths was calculated by dividing the total number of deaths by the number of inhabitants. The result was then multiplied by one hundred. The incidences were calculated for each variable analyzed.
- The average annual incidence of deaths was calculated for pre-pandemic, pandemic and post-pandemic periods.
- The percentages of variation in the annual incidence of deaths for each period were calculated.
- Multinomial logistic regressions were used to analyze the odds ratios of deaths in the periods analyzed. For these tests, 423,682 death records classified as unknown for each death certificate variable were excluded. Nagelkerke’s pseudo R2 was used and the enter method was employed. The periods (pre-pandemic, pandemic and post-pandemic) and CD variables were considered the dependent variable and the factors, respectively. Each research period (pre-pandemic, pandemic, and post-pandemic) was considered a dependent variable. The death certificate variables were selected as death certificate factors. These variables were organized into groups: sex, age group, education level, place of death, medical assistance, and autopsy on the death certificate. The odds ratio analyzes the relationship of each variable with the reference variable within its respective group. For the analysis of odds ratios, the following variables were considered as references: pre-pandemic and pandemic period, gender, 18–19 age group, white ethnicity, illiteracy, hospitals, not having received medical assistance before death and deaths in which no autopsies were carried out. Relationships between the pre-pandemic and post-pandemic periods were not analyzed in this study due to the focus on examining the association of successive periods.
- The average annual numbers of healthcare professionals and beds were calculated by averaging the total monthly numbers of healthcare workers and beds, respectively.
- The Shapiro−Wilk test was used to analyze the normality of the total number of deaths, The Human Development Index (HDI) and Gini coefficient values and the average annual number of healthcare workers and beds in the pre-pandemic and pandemic periods. This test was not used in 2023 because there are unique numbers for each variable.
- To analyze the correlation between the total number of deaths from respiratory infections and the average annual numbers of healthcare professionals and beds and The Human Development Index (HDI) and Gini coefficient values. Pearson and Spearman tests were used. Pearson’s correlation test was used for variables with a normal distribution. Spearman’s correlation test was used for numbers with a non-parametric distribution. Pearson’s correlation test was used for variables with a normal distribution. Spearman’s correlation test was used for numbers with a non-parametric distribution. Correlations were classified as positive or negative. Correlations with Pearson or Spearman coefficients greater than 0.7 were considered strong. Correlations with Pearson or Spearman coefficients equal to 1 were considered perfect.
3. Results
4. Discussion
4.1. Impact of Socio-Economic Factors
4.2. Difficulties in Etiological Differential Diagnosis
4.3. Factors Influencing Susceptibility to Respiratory Infections
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SUS | The Unified Health System |
SIM | Mortality Information System |
DATASUS | Department of Information and Informatics of the Unified Health System |
ICD | 10th International Classification of Diseases and Related Health Problems |
CNES | National Register of Health Establishments |
IBGE | Brazilian Institute of Geography and Statistics |
CD | Death certificate |
HDI | Human Development Index |
References
- Ministry of Health. Unified Health System—SUS. Available online: https://www.gov.br/saude/pt-br/sus (accessed on 5 May 2025).
- GBD 2019 Chronic Respiratory Diseases Collaborators. Global burden of chronic respiratory diseases and risk factors, 1990–2019: An update from the Global Burden of Disease Study 2019. eClinicalMedicine 2023, 59, 101936. [Google Scholar] [CrossRef]
- Ministry of Health. Brazil health 2021–2022: An analysis of the health situation in the face of the COVID-19 pandemic, a disease caused by the coronavirus SARS-CoV-2. 2022. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/saude_brasil_2020-2021_analise_pandemia_covid-19.pdf (accessed on 5 May 2025).
- Kanwal, K.; Asif, M.; Khalid, S.G.; Liu, H.; Qurashi, A.G.; Abdullah, S. Current Diagnostic Techniques for Pneumonia: A Scoping Review. Sensors 2024, 24, 4291. [Google Scholar] [CrossRef]
- Rachid, R.N.; Bezerra, B.W.W.; Santos, I.J.L.; Casanova, N.B.; Aquino, L.F.d.S.; Rocha, M.E.d.O.T.; Macêda, I.O.; Kiepert, E.Á.; Romão, G.M.; Correia, E.F.; et al. Pulmonary Tuberculosis: Challenges and Impacts on Public Health. Rev. Contemp. 2024, 4, e3884. [Google Scholar] [CrossRef]
- Panickar, A.; Manoharan, A.; Anbarasu, A.; Ramaiah, S. Respiratory tract infections: An update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol. 2024, 206, 382. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Ministry of Health. Sus Information Department History. Available online: https://datasus.saude.gov.br/sobre-o-datasus/ (accessed on 5 May 2025).
- Ministry of Health. Instruction Manual for Completing: Death Certificate. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/vigilancia/declaracao-de-obito-manual-de-instrucoes-para-preenchimento.pdf (accessed on 5 May 2025).
- Ministry of Health. Mortality Information System, 2024. Available online: https://www.gov.br/saude/pt-br/composicao/svsa/sistemas-de-informacao/sim (accessed on 5 May 2025).
- Ministry of Health. National Register of Health Establishments: Institutional. Available online: https://cnes.datasus.gov.br/pages/sobre/institucional.jsp (accessed on 5 May 2025).
- Brazilian Institute of Geography and Statistics. Population Projections. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9109-projecao-da-populacao.html (accessed on 5 May 2025).
- Brazilian Institute of Geography and Statistics. Institutional. Available online: https://www.ibge.gov.br/acesso-informacao/institucional/o-ibge.html (accessed on 5 May 2025).
- United Nations Development Programme. Human Development Report 2023–2024. Available online: https://hdr.undp.org/content/human-development-report-2023-24 (accessed on 5 May 2025).
- United Nations Development Programme. Atlas of Human Development in Brazil. Available online: http://www.atlasbrasil.org.br/acervo/atlas (accessed on 24 July 2025).
- Ministry of Health. Resolution No. 510, Dated 7 April 2016, Which Provides on the Standards Applicable to Research in Human and Social Sciences. Available online: http://conselho.saude.gov.br/resolucoes/2016/Reso510.pdf (accessed on 5 May 2025).
- Love, J.; Dropmann, D.; Selker, R.; Gallucci, M.; Jentschke, S.; Balci, S.; Seol, H.; Agosti, M.; Downie, A. Jamovi: About. Available online: https://www.jamovi.org/about.html (accessed on 5 May 2025).
- Ministry of Health. Ministry of Health Declares End of Public Health Emergency of National Importance due to COVID-19. 2022. Available online: https://www.gov.br/saude/pt-br/assuntos/noticias/2022/abril/ministerio-da-saude-declara-fim-da-emergencia-em-saude-publica-de-importancia-nacional-pela-covid-19 (accessed on 5 May 2025).
- Firquet, S.; Beaujard, S.; Lobert, P.-E.; Sané, F.; Caloone, D.; Izard, D.; Hober, D. Survival of enveloped and non-enveloped viruses on inanimate surfaces. Microbes Environ. 2015, 30, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.M.; Alvarez, A.M.; Rauch, K.C. Tendência das internações e da mortalidade de idosos por condições sensíveis à atenção primária. Rev. Bras. Epidemiol. 2019, 22, e190010. [Google Scholar] [CrossRef]
- Pereira, H.S.; Rodrigues, F.B. Effects of the COVID-19 Pandemic on Brazil’s HDI: A bibliographic research with documentary analysis. Encontro Int. Gestão Desenvolv. Inovação (EIGEDIN) 2021, 5, 1–14. Available online: https://periodicos.ufms.br/index.php/EIGEDIN/article/view/14350 (accessed on 5 May 2025).
- Bomfim, W.C.; Mirela, C.S.C. Changes in life expectancy in Brazil: Analyzing the past and the future, from 1950 to 2095. Rev. NUPEM 2021, 13, 210–223. [Google Scholar] [CrossRef]
- Werneck, J. Racismo institucional e saúde da população negra. Saude Soc. 2016, 25, 535–549. [Google Scholar] [CrossRef]
- Reis, A.P.; Góes, E.F.; Pilecco, F.B.; Almeida, M.d.C.C.d.; Diele-Viegas, L.M.; Menezes, G.M.d.S.; Aquino, E.M.L. Gender and race inequalities in the COVID-19 pandemic: Implications for control in Brazil. Saúde Debate 2020, 44, 324–340. [Google Scholar] [CrossRef]
- Kalache, A.; da Silva, A.; Giacomin, K.C.; de Lima, K.C.; Ramos, L.R.; Louvison, M.; Veras, R. Aging and inequalities: Social protection policies for older adults resulting from the COVID-19 pandemic in Brazil. Rev. Bras. Geriatr. Gerontol. 2020, 23, e200122. [Google Scholar] [CrossRef]
- Ranney, M.L.; Griffeth, V.; Jha, A.K. Critical Supply Shortages—The Need for Ventilators and Personal Protective Equipment during the COVID-19 Pandemic. N. Engl. J. Med. 2020, 382, e41. [Google Scholar] [CrossRef]
- Demenech, L.M.; Dumith, S.C.; Vieira, M.E.C.D.; Neiva-Silva, L. Income inequality and risk of infection and death by COVID-19 in Brazil. Rev. Bras. Epidemiol. 2020, 23, e200095. [Google Scholar] [CrossRef]
- Aracaty e Silva, M.L.; Lucas, M.M.; Pinto, L.M.R.B. The socioeconomic vulnerabilities of the state of Amazonas aggravated by the 2nd wave of the pandemic of COVID-19. Inf. GEPEC 2022, 26, 127–145. [Google Scholar] [CrossRef]
- Sousa, G.J.B.; Garces, T.S.; Cestari, V.R.F.; Florêncio, R.S.; Moreira, T.M.M.; Pereira, M.L.D. Estimation and prediction of COVID-19 cases in Brazilian metropolises. Rev. Latino-Am. Enfermagem. 2020, 28, e3345. [Google Scholar] [CrossRef] [PubMed]
- Lauar, I.S. Effects of the SARS-CoV-2 Pandemic on Morbidity and Mortality from Severe Acute Respiratory Syndrome in Belo Horizonte—2013 to 2023. Ph.D. Thesis, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2024. Available online: https://repositorio.ufmg.br/bitstream/1843/79049/1/Tese%20para%20reposito%cc%81rio%20UFMG.IDL.pdf (accessed on 5 May 2025).
- Kanda, M. Preoperative predictors of postoperative complications after gastric cancer resection. Surg. Today 2020, 50, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Lai, X.; Chen, Z.; Tu, S.; Qin, K. Clinical characteristics of critically ill patients co-infected with SARS-CoV-2 and the influenza virus in Wuhan, China. Int. J. Infect. Dis. 2020, 96, 683–687. [Google Scholar] [CrossRef]
- Siqueira, D.L.S.; Krik, M.W.; Luhm, K.R.; Carli, A.V.A.; Ruzyk, R.R.; Goes, G.A.R. Underreporting of COVID-19 Deaths: The Importance of Data Qualification. In Contributions of Public Health to Care Networks; Santos, D.V.D., Shimakura, S.E., Zots, T.G.G., Rattmann, Y.V., Luhm, K.R., Eds.; Editora Científica: São Paulo, Brazil, 2024; Volume 3, pp. 60–72. [Google Scholar] [CrossRef]
- Fei, H.; Yinyin, X.; Hui, C.; Ni, W.; Xin, D.; Wei, C.; Tao, L.; Shitong, H.; Miaomiao, S.; Mingting, C.; et al. The impact of the COVID-19 epidemic on tuberculosis control in China. Lancet Reg. Health West. Pac. 2020, 3, 100032. [Google Scholar] [CrossRef] [PubMed]
- Pernambuco, M.L. Impact of the COVID-19 Pandemic on Tuberculosis Cases and Outcomes due to Cure, Abandonment and Death in the Municipality of Fortaleza, Ceará. Ph.D. Thesis, Federal University of Ceará, Fortaleza, Brazil, 2021. Available online: https://repositorio.ufc.br/bitstream/riufc/76285/1/2023_dis_mlpernambuco.pdf (accessed on 5 May 2025).
- Principi, N.; Autore, G.; Ramundo, G.; Esposito, S. Epidemiology of Respiratory Infections during the COVID-19 Pandemic. Viruses 2023, 15, 1160. [Google Scholar] [CrossRef]
- Alves, T.H.E.; Souza, T.A.; Silva, S.A.; Ramos, N.A.; Oliveira, S.V. Underreporting of Death by COVID-19 in Brazil’s Second Most Populous State. Front. Public Health 2020, 8, 578645. [Google Scholar] [CrossRef]
- Ollila, H.M.; Partinen, M.; Koskela, J.; Borghi, J.; Savolainen, R.; Rotkirch, A.; Laine, L.T.; Saokaew, S. Face masks to prevent transmission of respiratory infections: Systematic review and meta-analysis of randomized controlled trials on face mask use. PLoS ONE 2022, 17, e0271517. [Google Scholar] [CrossRef]
- Gurbaxani, B.M.; Hill, A.N.; Patel, P. Unpacking Cochrane’s Update on Masks and COVID-19. Am. J. Public Health 2023, 113, 1074–1078. [Google Scholar] [CrossRef]
- Olsen, S.J.; Azziz-Baumgartner, E.; Budd, A.P.; Brammer, L.; Sullivan, S.; Pineda, R.F.; Cohen, C.; Fry, A.M. Decreased influenza activity during the COVID-19 pandemic-United States, Australia, Chile, and South Africa, 2020. Am. J. Transplant. 2020, 20, 3681–3685. [Google Scholar] [CrossRef]
- Rankin, D.A.; Spieker, A.J.; Perez, A.; Stahl, A.L.; Rahman, H.K.; Stewart, L.S.; Schuster, J.E.; Lively, J.Y.; Haddadin, Z.; Probst, V.; et al. Circulation of rhinoviruses and/or enteroviruses in pediatric patients with acute respiratory illness before and during the COVID-19 pandemic in the US. JAMA Netw. Open 2023, 6, e2254909. [Google Scholar] [CrossRef]
- Danino, D.; Ben-Shimol, S.; van der Beek, B.A.; Givon-Lavi, N.; Avni, Y.S.; Greenberg, D.; Weinberger, D.M.; Dagan, R. Decline in pneumococcal disease in young children during the coronavirus disease 2019 (COVID-19) pandemic in Israel associated with suppression of seasonal respiratory viruses, despite persistent pneumococcal carriage: A prospective cohort study. Clin. Infect. Dis. 2022, 75, e1154–e1164. [Google Scholar] [CrossRef] [PubMed]
- Fine, S.R.; Bazzi, L.A.; Callear, A.P.; Petrie, J.G.; Malosh, R.E.; Foster-Tucker, J.E.; Smith, M.; Ibiebele, J.; McDermott, A.; Rolfes, M.A.; et al. Respiratory virus circulation during the first year of the COVID-19 pandemic in the Household Influenza Vaccine Evaluation (HIVE) cohort. Influenza Other Respir Viruses 2023, 17, e13106. [Google Scholar] [CrossRef] [PubMed]
- Fahim, M.; Abu ElSood, H.; AbdElGawad, B.; Deghedy, O.; Naguib, A.; Roshdy, W.H.; Showky, S.; Kamel, R.; Elguindy, N.; Fattah, M.A.; et al. Adapting an integrated acute respiratory infections sentinel surveillance to the COVID-19 pandemic requirements, Egypt, 2020–2022. Public Health Pract. 2023, 5, 100358. [Google Scholar] [CrossRef] [PubMed]
- Bertran, M.; Amin-Chowdhury, Z.; Sheppard, C.L.; Eletu, S.; Zamarreño, D.V.; Ramsay, M.E.; Litt, D.; Fry, N.K.; Ladhani, S.N. Increased incidence of invasive pneumococcal disease among children after COVID-19 pandemic, England. Emerg. Infect. Dis. 2022, 28, 1669–1672. [Google Scholar] [CrossRef]
- Perniciaro, S.; van der Linden, M.; Weinberger, D.M. Reemergence of Invasive Pneumococcal Disease in Germany During the Spring and Summer of 2021. Clin. Infect. Dis. 2022, 75, 1149–1153. [Google Scholar] [CrossRef]
- Nickbakhsh, S.; Mair, C.; Matthews, L.; Reeve, R.; Johnson, P.C.D.; Thorburn, F.; von Wissmann, B.; Reynolds, A.; McMenamin, J.; Gunson, R.N.; et al. Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl. Acad. Sci. USA 2019, 116, 27142–27150. [Google Scholar] [CrossRef] [PubMed]
- Paula, C.R.; Pelazza, B.B.; Cabral, K.B.; de Lima, F.H.A.; Maia, L.G.; de Araújo, R.C.G.; Tacsi, Y.R.C.; Ferreira, P.A.d.M.L.; Matos, M.A.; Barbosa, M.A. Male mortality from conditions sensitive to primary care from the perspective of the national health policy. Rev. Eletrônica Acervo Saúde 2023, 7, e12945. [Google Scholar] [CrossRef]
- Azambuja, H.C.S.; Carrijo, M.F.; Martins, T.C.R.; Luchesi, B.M. The impact of influenza vaccination on morbidity and mortality among the elderly in the regions of Brazil between 2010 and 2019. Cad. Saúde Pública 2020, 36, e00040120. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.E.S.; Griep, R. Analysis of the Epidemiological Behavior of Tuberculosis and its Relationship with the Age Group in the State of Paraná. Rev. Ibero-Am. Humanidades Ciênc. E Educ. 2024, 10, 474–482. [Google Scholar]
- Santos, L.K.C.; Aleixo, N.C.R.; Júnior, L.N. Climatic conditions and social vulnerability in pneumonia Morbidity in Manaus, Amazonas, Brazil. RBClima 2024, 34, 837–865. [Google Scholar] [CrossRef]
- Mota, M.V. Air Quality Correlation with the COVID-19 Pandemic. Bachelor’s Thesis, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil, 2021. Available online: https://monografias.ufop.br/bitstream/35400000/3806/1/MONOGRAFIA_Correla%C3%A7%C3%A3oQualidadeAr.pdf (accessed on 5 May 2025).
Respiratory System Infections | Description |
---|---|
Pneumonia | |
Unknown etiology | Infectious agents that have caused deaths from pneumonia, which may or may not have been identified through complementary tests. The bacterial category includes S. pneumoniae, H. influenzae and other bacteria. The viral category includes adenovirus, respiratory syncytial virus and others. The last classification includes deaths caused by P. jirovecii. |
Pneumonia, unspecified (J18.9) | |
Bronchopneumonia, unspecified (J18.0) | |
Others (J18.1, J18.2 and J18.8) | |
Bacterial etiology | |
Bacterial pneumonia, unspecified (J15.9) | |
Specified etiologic agents (J13, J14, J15.0–J15.7) | |
Others (B01.2, B05.2, B25.0, J15.8 and P23.9) | |
Viral etiology | |
Viral pneumonia, unspecified (J12.9) | |
Others (J12.0–J12.8) | |
Others pneumonia | |
HIV disease resulting in Pneumocystis jirovecii pneumonia (B20.6) | |
Tuberculosis | |
Unconfirmed pulmonary (A16.0–A16.2) | Deaths caused by respiratory forms of tuberculosis, with or without bacteriological and histological confirmation. |
Confirmed pulmonary (A15.0–A15.3) | |
Other respiratory forms of tuberculosis, without bacteriological or histological confirmation (A16.3–16.9) | |
Other respiratory forms of tuberculosis with bacteriological and histological confirmation (A15.4–A15.9) | |
Sequelae of tuberculosis of the respiratory tract (B90.9) | |
Influenza flu | |
Complicated with pneumonia (J10.0 and J11.0) | Deaths from flu with or without complications. Includes deaths with or without an infectious agent identified by complementary tests. |
Other symptoms (J10.1, J10.8, J11.1 and J11.8) | |
Avian influenza virus (J09) | |
Other ICD | |
Acute lower airway infections (J21–J22) | Respiratory diseases with low numbers of deaths from infectious agents, not included in the other groups analyzed. |
Acute upper airway infections (J00–J06) | |
Other pulmonary mycobacteria (A31.0) | |
Other pulmonary mycoses (B37.1, B80.0–B80.1, B39.0–B39.1, B40.0–B40.7, B41.0, B44.0–B44.1, B45.0, B46.0) | |
Others (B33.4 and B58.3) |
Groups | PRE | PAN | %PRE | POST | %PAN | Total | RF |
---|---|---|---|---|---|---|---|
Pneumonia | 49.73 | 44.37 | −10.78 | 50.24 | 13.22 | 736,489 | 91.79 |
Unknown etiology | 41.87 | 30.46 | −27.27 | 38.09 | 25.07 | 580,403 | 72.34 |
Pneumonia, unspecified | 32.03 | 23.88 | −25.46 | 30.09 | 26.02 | 448,276 | 55.87 |
Bronchopneumonia, unspecified | 8.75 | 5.70 | −34.88 | 6.77 | 18.91 | 116,171 | 14.48 |
Others | 1.09 | 0.88 | −19.28 | 1.23 | 39.29 | 15,956 | 1.99 |
Bacterial etiology | 7.26 | 11.79 | 62.34 | 11.46 | −2.8 | 139,665 | 17.41 |
Bacterial pneumonia, unspecified | 6.35 | 10.58 | 66.64 | 10.25 | −3.14 | 123,682 | 15.42 |
Other pneumonias | 0.65 | 0.94 | 44.26 | 0.88 | −5.97 | 11,717 | 1.46 |
Specified etiologic agents | 0.27 | 0.28 | 4.09 | 0.34 | 20.79 | 4266 | 0.53 |
Viral etiology | 0.18 | 1.86 | 950.63 | 0.38 | −79.38 | 10,982 | 1.37 |
Viral pneumonia, unspecified | 0.12 | 1.62 | 1199.51 | 0.26 | −84.13 | 9169 | 1.14 |
Others | 0.05 | 0.24 | 358.97 | 0.13 | −47.38 | 1813 | 0.23 |
HIV disease resulting in Pneumocystis jirovecii pneumonia | 0.42 | 0.26 | −38.15 | 0.30 | 14.66 | 5439 | 0.68 |
Tuberculosis | 2.66 | 2.90 | 9.19 | 3.27 | 12.78 | 42,774 | 5.33 |
Unconfirmed pulmonary | 1.62 | 1.48 | −9.17 | 1.60 | 8.11 | 24,064 | 3.00 |
Confirmed pulmonary | 0.42 | 0.68 | 60.89 | 0.88 | 30.27 | 8418 | 1.05 |
Other unconfirmed respiratory forms | 0.33 | 0.41 | 21.70 | 0.40 | −2.71 | 5561 | 0.69 |
Other confirmed respiratory forms | 0.08 | 0.20 | 134.61 | 0.26 | 31.13 | 2119 | 0.26 |
Sequelae of respiratory tuberculosis | 0.19 | 0.14 | −26.04 | 0.14 | −3.34 | 2612 | 0.33 |
Influenza flu | 0.53 | 1.09 | 104.55 | 0.69 | −36.56 | 11,028 | 1.37 |
Complicated with pneumonia | 0.21 | 0.46 | 117.12 | 0.30 | −34.60 | 4574 | 0.57 |
Other symptoms | 0.11 | 0.53 | 383.16 | 0.27 | −48.71 | 3949 | 0.49 |
Avian influenza virus | 0.21 | 0.09 | −55.23 | 0.11 | 22.99 | 2505 | 0.31 |
Other ICD | 0.59 | 1.04 | 76.29 | 1.14 | 9.84 | 12,054 | 1.50 |
Acute lower airway infections | 0.29 | 0.54 | 84.63 | 0.59 | 10.08 | 6102 | 0.76 |
Acute upper airway infections | 0.12 | 0.21 | 75.85 | 0.28 | 33.87 | 2515 | 0.31 |
Other mycobacteria | 0.10 | 0.21 | 119.15 | 0.18 | −14.63 | 2152 | 0.27 |
Other mycoses | 0.07 | 0.07 | 4.46 | 0.08 | 7.38 | 1066 | 0.13 |
Others | 0.02 | 0.01 | −26.19 | 0.01 | 23.53 | 219 | 0.03 |
Brazil | 53.51 | 49.40 | −7.69 | 55.34 | 12.03 | 802,345 |
Variables | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gini index | 0.518 | 0.519 | 0.537 | 0.539 | 0.545 | 0.544 | 0.524 | 0.544 | 0.518 | 0.518 | ||
The Human Development Index | 0.756 | 0.756 | 0.758 | 0.760 | 0.761 | 0.766 | 0.758 | 0.754 | 0.760 | 0.760 | ||
Average annual number of health professionals | 1,586,129 | 1,652,944 | 1,731,749 | 1,828,759 | 1,953,864 | 2,074,475 | 2,246,904 | 2,521,958 | 2,689,827 | 2,868,082 | ||
Average annual number of beds | 598,027 | 589,078 | 587,690 | 591,662 | 593,917 | 594,349 | 629,364 | 665,670 | 651,911 | 647,727 | ||
Periods | PRE | PAN | %PRE | POST | %PAN | Total | PRE | PAN | %PRE | POST | %PAN | Total |
Groups | Pneumonia | Tuberculosis | ||||||||||
Federal Regions | ||||||||||||
Southeast | 65.44 | 54.82 | −16.22 | 63.85 | 16.47 | 409,546 | 2.81 | 3.13 | 11.33 | 3.48 | 11.15 | 19,681 |
South | 45.83 | 38.28 | −16.48 | 42.49 | 11.00 | 98,155 | 2.04 | 2.35 | 15.13 | 2.64 | 12.35 | 5.01 |
Midwest | 38.19 | 35.42 | −7.24 | 41.27 | 16.52 | 44,208 | 1.76 | 2.28 | 29.39 | 2.53 | 10.80 | 2355 |
Northeast | 34.72 | 35.33 | 1.77 | 38.71 | 9.55 | 143,115 | 2.69 | 2.60 | −3.44 | 3.05 | 17.04 | 10,931 |
North | 31.76 | 38.19 | 20.24 | 38.95 | 1.99 | 41,465 | 3.70 | 4.27 | 15.56 | 4.79 | 12.02 | 4797 |
Sex | ||||||||||||
Masculine | 50.80 | 46.72 | −8.04 | 52.15 | 11.62 | 365,166 | 4.13 | 4.61 | 11.67 | 5.16 | 11.92 | 32,206 |
Feminine | 48.74 | 42.2 | −13.42 | 48.47 | 14.86 | 371,323 | 1.30 | 1.32 | 2.06 | 1.53 | 15.63 | 10,568 |
Age Group’s | ||||||||||||
18–19 | 1.78 | 1.51 | −15.34 | 1.70 | 12.56 | 1,12 | 0.29 | 0.50 | 71.02 | 0.65 | 30.44 | 253 |
20–29 | 2.63 | 2.27 | −13.5 | 2.70 | 18.64 | 8412 | 0.72 | 1.00 | 37.95 | 1.19 | 19.56 | 2834 |
30–39 | 4.96 | 4.23 | −14.76 | 4.65 | 10.05 | 15,647 | 1.30 | 1.63 | 25.60 | 1.83 | 12.50 | 4816 |
40–49 | 10.61 | 9.13 | −13.99 | 9.68 | 6.05 | 28,473 | 2.46 | 2.62 | 6.23 | 3.20 | 22.21 | 7353 |
50–59 | 24.13 | 21.3 | −11.73 | 22.13 | 3.92 | 53,065 | 3.95 | 3.96 | 0.45 | 4.16 | 5.07 | 9159 |
60–69 | 62.05 | 56.18 | −9.46 | 56.81 | 1.12 | 94,363 | 5.27 | 5.26 | −0.22 | 5.92 | 12.66 | 8452 |
70–79 | 199.75 | 165.67 | −17.06 | 176.15 | 6.33 | 158,477 | 6.97 | 6.43 | −7.75 | 6.60 | 2.73 | 5754 |
80–89 | 746.72 | 564.96 | −24.34 | 625.25 | 10.67 | 229,422 | 10.36 | 9.47 | −8.58 | 9.35 | −1.32 | 3385 |
90 or more | 2532.10 | 2031.78 | −19.76 | 2438.83 | 20.03 | 147,510 | 13.18 | 11.08 | −15.94 | 11.57 | 4.38 | 768 |
Ethnicity | ||||||||||||
White | 29.73 | 25.05 | −15.76 | 28.71 | 14.60 | 431,155 | 0.86 | 0.92 | 7.41 | 1.00 | 8.47 | 13,671 |
Mixed Race | 14.46 | 14.62 | 1.11 | 16.53 | 13.05 | 225,546 | 1.29 | 1.43 | 10.48 | 1.66 | 16.23 | 20,991 |
Black | 3.26 | 3.35 | 2.91 | 3.79 | 13.07 | 51,148 | 0.37 | 0.44 | 19.84 | 0.52 | 16.68 | 6.25 |
Others | 0.50 | 0.45 | −9.78 | 0.55 | 21.88 | 7514 | 0.04 | 0.04 | 5.36 | 0.04 | 7.79 | 589 |
Not informed | 1.78 | 0.89 | −49.72 | 0.66 | −26.60 | 21,126 | 0.10 | 0.07 | −31.1 | 0.05 | −24.01 | 1273 |
Education | ||||||||||||
Illiteracy | 10.16 | 8.60 | −15.32 | 9.88 | 14.82 | 147,732 | 0.41 | 0.37 | −10.35 | 0.41 | 11.81 | 6122 |
Primary | 23.09 | 21.12 | −8.54 | 24.85 | 17.65 | 346,949 | 1.38 | 1.54 | 11.12 | 1.76 | 14.59 | 22,496 |
Secondary | 4.37 | 5.20 | 19.05 | 5.90 | 13.39 | 73,273 | 0.26 | 0.37 | 40.61 | 0.47 | 25.46 | 4865 |
Tertiary | 1.92 | 2.34 | 22.23 | 2.71 | 15.89 | 32,623 | 0.06 | 0.08 | 38.7 | 0.10 | 22.73 | 1031 |
Not informed | 10.20 | 7.11 | −30.32 | 6.90 | −2.90 | 135,912 | 0.54 | 0.54 | 0.77 | 0.53 | −1.74 | 8.26 |
Place of Death | ||||||||||||
Health establishments | 45.25 | 40.90 | −9.61 | 46.27 | 13.13 | 673,484 | 2.23 | 2.44 | 9.57 | 2.80 | 14.87 | 35,983 |
Domicile | 3.93 | 3.03 | −22.97 | 3.44 | 13.72 | 55,055 | 0.37 | 0.40 | 9.40 | 0.40 | −0.97 | 5854 |
Others | 0.55 | 0.44 | −20.22 | 0.52 | 18.90 | 7805 | 0.06 | 0.06 | −6.99 | 0.07 | 24.31 | 920 |
Not informed | 0.01 | 0.01 | −27.2 | 0.00 | −37.92 | 145 | 0.00 | 0.00 | 67.60 | 0.00 | 0.00 | 17 |
Healthcare | ||||||||||||
Yes | 29.61 | 26.18 | −11.58 | 29.98 | 14.54 | 437,416 | 1.50 | 1.63 | 8.89 | 1.95 | 19.51 | 24,295 |
No | 1.38 | 1.18 | −14.28 | 1.35 | 14.08 | 20,138 | 0.15 | 0.17 | 9.25 | 0.17 | 2.83 | 2463 |
Not informed | 18.75 | 17.01 | −9.27 | 18.9 | 11.13 | 278,935 | 1.00 | 1.10 | 9.63 | 1.15 | 4.32 | 16,016 |
Necropsy | ||||||||||||
Yes | 3.05 | 1.16 | −62.03 | 2.13 | 84.00 | 36.23 | 0.30 | 0.17 | −42.67 | 0.29 | 66.12 | 3963 |
No | 29.55 | 26.8 | −9.29 | 30.16 | 12.52 | 440,151 | 1.48 | 1.73 | 17.2 | 1.96 | 13.21 | 24,584 |
Not informed | 17.13 | 16.41 | −4.23 | 17.95 | 9.37 | 260,108 | 0.88 | 1.00 | 13.43 | 1.03 | 2.83 | 14,227 |
Groups | Influenza | Others | ||||||||||
Federal Regions | ||||||||||||
Southeast | 0.48 | 1.06 | 120.35 | 0.51 | −51.34 | 4375 | 0.47 | 0.69 | 46.07 | 0.72 | 4.61 | 3713 |
South | 1.00 | 0.79 | −21.43 | 0.89 | 13.51 | 2108 | 0.58 | 0.82 | 41.42 | 0.96 | 16.71 | 1583 |
Midwest | 0.89 | 0.86 | −3.07 | 0.9 | 3.79 | 1039 | 0.33 | 0.53 | 59.35 | 0.50 | −4.78 | 481 |
Northeast | 0.29 | 1.23 | 322.73 | 0.67 | −45.77 | 2523 | 0.90 | 1.96 | 117.8 | 2.22 | 13.51 | 5529 |
North | 0.38 | 1.52 | 302.18 | 1.10 | −27.93 | 983 | 0.48 | 0.82 | 68.86 | 0.82 | 0.48 | 748 |
Sex | ||||||||||||
Masculine | 0.57 | 1.08 | 89.7 | 0.63 | −41.76 | 5386 | 0.65 | 1.15 | 76.87 | 1.30 | 13.40 | 6403 |
Feminine | 0.50 | 1.09 | 120.22 | 0.75 | −31.83 | 5642 | 0.54 | 0.94 | 75.67 | 1.00 | 5.85 | 5651 |
Age Group’s | ||||||||||||
18–19 | 0.09 | 0.07 | −16.62 | 0.05 | −34.3 | 53 | 0.09 | 0.10 | 15.77 | 0.11 | 13.77 | 61 |
20–29 | 0.08 | 0.12 | 55.05 | 0.11 | −6.53 | 306 | 0.09 | 0.11 | 14.04 | 0.16 | 47.7 | 343 |
30–39 | 0.17 | 0.16 | −6.32 | 0.16 | −4.02 | 557 | 0.12 | 0.18 | 55.7 | 0.21 | 15.24 | 477 |
40–49 | 0.45 | 0.29 | −34.12 | 0.29 | −1.22 | 1087 | 0.25 | 0.39 | 58.72 | 0.43 | 10.67 | 889 |
50–59 | 0.72 | 0.64 | −11.51 | 0.47 | −25.81 | 1554 | 0.44 | 0.74 | 67.64 | 0.73 | −0.18 | 1301 |
60–69 | 0.81 | 1.46 | 81.3 | 0.86 | −40.9 | 1646 | 0.98 | 1.68 | 71.43 | 1.56 | −6.88 | 2027 |
70–79 | 1.3 | 4.11 | 217.35 | 2.10 | −49.05 | 1999 | 2.19 | 3.65 | 67.09 | 3.66 | 0.11 | 2439 |
80–89 | 3.61 | 11.83 | 227.37 | 6.66 | −43.67 | 2276 | 6.23 | 10.57 | 69.62 | 11.36 | 7.46 | 2809 |
90 or more | 13.79 | 42.99 | 211.81 | 25.41 | −40.88 | 1.55 | 21.00 | 32.77 | 56.03 | 41.83 | 27.65 | 1708 |
Ethnicity | ||||||||||||
White | 0.33 | 0.52 | 56.12 | 0.37 | −28.42 | 6051 | 0.30 | 0.46 | 54.8 | 0.51 | 11.38 | 5656 |
Mixed Race | 0.15 | 0.44 | 194.96 | 0.24 | −45.04 | 3782 | 0.22 | 0.44 | 95.88 | 0.47 | 8.73 | 4821 |
Black | 0.03 | 0.09 | 222.44 | 0.06 | −36.52 | 782 | 0.05 | 0.09 | 98.32 | 0.11 | 26.00 | 1018 |
Others | 0.01 | 0.01 | 86.87 | 0.01 | −31.33 | 126 | 0.01 | 0.01 | 149.69 | 0.01 | 14.31 | 133 |
Not informed | 0.02 | 0.03 | 72.32 | 0.01 | −58.45 | 287 | 0.02 | 0.04 | 107.39 | 0.03 | −31.58 | 426 |
Education | ||||||||||||
Illiteracy | 0.08 | 0.24 | 190.23 | 0.15 | −35.97 | 2092 | 0.12 | 0.20 | 68.79 | 0.23 | 11.65 | 2416 |
Primary | 0.23 | 0.49 | 109.12 | 0.29 | −41.55 | 4874 | 0.25 | 0.43 | 71.8 | 0.50 | 14.6 | 5124 |
Secondary | 0.08 | 0.13 | 61.52 | 0.10 | −23.58 | 1547 | 0.06 | 0.14 | 125.46 | 0.16 | 19.73 | 1449 |
Tertiary | 0.04 | 0.05 | 26.58 | 0.05 | 6.18 | 702 | 0.02 | 0.06 | 133.91 | 0.07 | 16.28 | 606 |
Not informed | 0.09 | 0.18 | 90.67 | 0.09 | −45.98 | 1813 | 0.13 | 0.21 | 58.36 | 0.19 | −10.16 | 2459 |
Place of Death | ||||||||||||
Health establishments | 0.46 | 0.83 | 82.35 | 0.54 | −35.86 | 8932 | 0.49 | 0.89 | 81.06 | 0.97 | 9.42 | 10,191 |
Domicile | 0.07 | 0.24 | 257.11 | 0.14 | −41.18 | 1933 | 0.09 | 0.13 | 52.11 | 0.16 | 16.07 | 1673 |
Others | 0.01 | 0.02 | 124.09 | 0.01 | −6.85 | 158 | 0.01 | 0.02 | 55.18 | 0.01 | −17.47 | 188 |
Not informed | 0.00 | 0.00 | −38.70 | 0.00 | 197.31 | 5 | 0.00 | 0.00 | 84.79 | 0.00 | 0,00 | 2 |
Healthcare | ||||||||||||
Yes | 0.38 | 0.61 | 62.27 | 0.44 | −29.00 | 7025 | 0.36 | 0.59 | 61.53 | 0.64 | 8.77 | 7059 |
No | 0.02 | 0.10 | 445.25 | 0.07 | −33.53 | 770 | 0.03 | 0.04 | 27.14 | 0.04 | 18.62 | 504 |
Not informed | 0.13 | 0.37 | 176.47 | 0.18 | −50.05 | 3233 | 0.20 | 0.42 | 110.59 | 0.46 | 10.58 | 4491 |
Necropsy | ||||||||||||
Yes | 0.05 | 0.03 | −34.97 | 0.04 | 17.30 | 655 | 0.03 | 0.02 | −28.38 | 0.03 | 40.42 | 416 |
No | 0.36 | 0.70 | 93.60 | 0.47 | −32.28 | 7339 | 0.37 | 0.64 | 71.09 | 0.68 | 6.25 | 7434 |
Not informed | 0.12 | 0.35 | 194.91 | 0.18 | −49.93 | 3034 | 0.19 | 0.38 | 103.14 | 0.44 | 14.11 | 4204 |
Variables | Gini Index | HDI | Health Professionals | Beds |
---|---|---|---|---|
Pneumonia | ||||
90 years or older | 0.869 | 0.881 | 0.918 | - |
Black | 0.870 | 0.867 | 0.900 | - |
Mixed Race | 0.894 | 0.848 | 0.903 | - |
Illiteracy | 0.881 | - | 0.867 | - |
Primary | 0.901 | 0.825 | 0.872 | - |
Secondary | 0.863 | 0.913 | 0.931 | - |
Tertiary | 0.874 | 0.914 | 0.929 | - |
No Health Care | 0.954 | - | 0.887 | - |
Tuberculosis | ||||
40 to 49 years old | −0.881 | - | - | - |
Secondary | - | 0.901 | - | - |
No Health Care | 0.899 | 0.941 | 0.985 | - |
Performance of autopsy | −0.909 | - | - | - |
Influenza | ||||
Brazil | - | - | 0.750 | - |
Masculine | - | - | 0.730 | - |
Feminine | - | - | 0.756 | - |
60 to 69 years old | - | - | 0.737 | - |
70 to 79 years old | - | - | 0.878 | 0.775 |
80 to 89 years old | - | - | 0.872 | 0.755 |
90 years or older | - | - | 0.832 | 0.709 |
Black | - | - | 0.873 | 0.780 |
Mixed Race | - | - | 0.853 | 0.736 |
Illiteracy | - | - | 0.817 | 0.700 |
Primary Education | - | - | 0.756 | - |
Health establishments | - | - | 0.678 | - |
Domicile | - | - | 0.881 | 0.788 |
No health care | - | - | 0.920 | 0.871 |
Periods | Pandemic vs. Pre-Pandemic | Post-Pandemic vs. X Pandemic | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Groups | Pneumonia | Tuberculosis | Influenza | Pneumonia | Tuberculosis | Influenza | |||||||
Nagelkerke pseudo-R-squared | 0.79% | 1.31% | 11.60% | 0.79% | 1.31% | 11.60% | |||||||
CD variables | Reference | P | OR | P | OR | P | OR | P | OR | P | OR | P | OR |
Sex | |||||||||||||
Feminine | Masculine | <0.001 | 0.96 | 0.013 | 0.91 | 0.047 | 1.12 | 0.053 | 1.02 | 0.301 | 1.06 | 0.054 | 1.19 |
Age Group’s | |||||||||||||
20–29 | 18–19 | 0.966 | 1.00 | 0.221 | 0.78 | 0.298 | 1.52 | 0.774 | 1.05 | 0.586 | 1.16 | 0.568 | 1.49 |
30–39 | 0.890 | 1.01 | 0.045 | 0.67 | 0.727 | 0.87 | 0.766 | 0.95 | 0.794 | 1.07 | 0.555 | 1.50 | |
40–49 | 0.289 | 1.12 | 0.022 | 0.64 | 0.229 | 0.63 | 0.871 | 1.03 | 0.442 | 1.23 | 0.500 | 1.58 | |
50–59 | 0.180 | 1.15 | 0.006 | 0.58 | 0.871 | 0.94 | 0.962 | 0.99 | 0.705 | 1.11 | 0.896 | 1.09 | |
60–69 | 0.016 | 1.28 | 0.023 | 0.64 | 0.045 | 2.12 | 0.810 | 1.04 | 0.470 | 1.21 | 0.980 | 0.98 | |
70–79 | 0.052 | 1.22 | 0.013 | 0.61 | <0.001 | 3.97 | 0.598 | 1.09 | 0.596 | 1.16 | 0.749 | 0.81 | |
80–89 | 0.339 | 1.10 | 0.014 | 0.61 | <0.001 | 3.92 | 0.573 | 1.10 | 0.896 | 0.96 | 0.745 | 0.81 | |
90 or more | 0.133 | 1.16 | 0.065 | 0.66 | <0.001 | 3.59 | 0.324 | 1.17 | 0.633 | 0.86 | 0.762 | 0.82 | |
Ethnicity | |||||||||||||
Black | White | <0.001 | 1.25 | 0.056 | 1.10 | <0.001 | 2.30 | 0.699 | 1.01 | 0.003 | 1.24 | 0.394 | 1.14 |
Mixed Race | <0.001 | 1.25 | 0.275 | 1.04 | <0.001 | 2.04 | 0.619 | 1.01 | 0.059 | 1.10 | <0.001 | 0.69 | |
Education | |||||||||||||
Primary | Illiteracy | <0.001 | 1.13 | <0.001 | 1.27 | 0.143 | 1.12 | <0.001 | 1.06 | 0.857 | 0.99 | 0.457 | 0.92 |
Secondary | <0.001 | 1.45 | <0.001 | 1.61 | 0.041 | 1.23 | 0.415 | 1.02 | 0.332 | 1.09 | 0.690 | 1.06 | |
Tertiary | <0.001 | 1.46 | <0.001 | 1.56 | 0.412 | 0.90 | 0.076 | 1.05 | 0.413 | 1.12 | 0.033 | 1.48 | |
Place of Death | |||||||||||||
Domicile | Health establishments | <0.001 | 1.07 | <0.001 | 1.38 | 0.282 | 1.11 | <0.001 | 0.90 | 0.014 | 0.82 | 0.934 | 0.99 |
Healthcare | |||||||||||||
Yes | No | 0.041 | 0.94 | 0.089 | 1.17 | <0.001 | 0.34 | <0.001 | 1.16 | 0.014 | 0.85 | <0.001 | 2.93 |
Necropsy | |||||||||||||
Yes | No | <0.001 | 0.43 | <0.001 | 0.45 | <0.001 | 0.34 | <0.001 | 1.73 | <0.001 | 1.79 | 0.002 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, N.L.C.; Ferraz, P.H.S.S.; Souza, R.L.d.; Maccari, M.F.; Vidal, M.R.; Hattori, W.T.; Oliveira, S.V.d. Respiratory Infections in Adults and Inequality: An Analysis of Deaths and Their Socioeconomic Determinants in Brazil. Hygiene 2025, 5, 34. https://doi.org/10.3390/hygiene5030034
Dias NLC, Ferraz PHSS, Souza RLd, Maccari MF, Vidal MR, Hattori WT, Oliveira SVd. Respiratory Infections in Adults and Inequality: An Analysis of Deaths and Their Socioeconomic Determinants in Brazil. Hygiene. 2025; 5(3):34. https://doi.org/10.3390/hygiene5030034
Chicago/Turabian StyleDias, Nikolas Lisboa Coda, Pedro Henrique Santos Serafim Ferraz, Rayssa Lopes de Souza, Mariana Felix Maccari, Manoel Reverendo Vidal, Wallisen Tadashi Hattori, and Stefan Vilges de Oliveira. 2025. "Respiratory Infections in Adults and Inequality: An Analysis of Deaths and Their Socioeconomic Determinants in Brazil" Hygiene 5, no. 3: 34. https://doi.org/10.3390/hygiene5030034
APA StyleDias, N. L. C., Ferraz, P. H. S. S., Souza, R. L. d., Maccari, M. F., Vidal, M. R., Hattori, W. T., & Oliveira, S. V. d. (2025). Respiratory Infections in Adults and Inequality: An Analysis of Deaths and Their Socioeconomic Determinants in Brazil. Hygiene, 5(3), 34. https://doi.org/10.3390/hygiene5030034