Formation/Removal of Biofilms on/from Coupons of Selected Food-Grade Elastomeric Polymers vs. Plexiglass Used for the Fruit-Catching Plates of OTR Blueberry Machine Harvesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains Used in the Study
2.2. Surface Coupons Used in the Study
2.3. Biofilm Formation on Surface Coupons
2.4. Biofilm Removal Using Sanitizer Treatments
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Bacterial Isolates Used in the Study
3.2. Biofilm Formation on Surface Coupons
3.3. Biofilm Control
4. Discussion
4.1. Biofilm Formation on Different Types of Coupons
4.2. The Effects of Culture on Biofilm Formation
4.3. Biofilm Removal from Different Coupons
4.4. Interaction between Sanitizer Treatment and Type of Surface Coupons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Takeda, F.; Yang, W.Q.; Li, C.; Freivalds, A.; Sung, K.; Xu, R.; Hu, B.; Williamson, J.; Sargent, S. Applying new technologies to transform blueberry harvesting. Agronomy 2017, 7, 33. [Google Scholar] [CrossRef]
- Gallardo, R.K.; Stafne, E.T.; DeVetter, L.W.; Zhang, Q.; Li, C.; Takeda, F.; Allen, R. Blueberry producers’ attitudes toward harvest mechanization for fresh market. Hort. Technol. 2018, 28, 10–16. [Google Scholar] [CrossRef]
- Li, C.; Yu, P.; Takeda, F.; Krewer, G. A miniature instrumented sphere to understand impacts created by mechanical blueberry harvesters. Hort. Technol. 2013, 23, 425–429. [Google Scholar] [CrossRef]
- Yu, P.; Li, C.; Takeda, F.; Krewer, G.; Rains, G.; Hamrita, T. Quantitative evaluation of a rotary blueberry mechanical harvester using a miniature instrumented sphere. Comput. Electron. Agric. 2012, 88, 25–31. [Google Scholar] [CrossRef]
- Takeda, F.; Krewer, G.; Andrews, E.L.; Mullinix, B.; Peterson, D.L. Assessment of the V45 blueberry harvester on rabbiteye blueberry and southern highbush blueberry pruned to V-shaped canopy. Hort. Technol. 2008, 18, 130–138. [Google Scholar] [CrossRef]
- DeVetter, L.W.; Yang, W.Q.; Takeda, F.; Korthuis, S.; Li, C. Modified over-the-row machine harvesters to improve northern highbush blueberry fresh fruit quality. Agriculture 2019, 9, 13. [Google Scholar] [CrossRef]
- Gallardo, K.; Lu, L.; Zilberman, D.; Jung, A.R. Adoption of mechanization solutions for harvesting fresh market blueberries—Selected paper prepared for presentation at the 2019 Agricultural and Applied Economic Association Annual Meeting. Ag Econ. 2019, 290719. [Google Scholar] [CrossRef]
- Gazula, H.; Quansah, J.; Allen, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial loads on selected fresh blueberry packing lines. Food Control. 2019, 100, 315–320. [Google Scholar] [CrossRef]
- Toma, C.; Lu, Y.; Higa, N.; Nakasone, N.; Chinen, I.; Baschkier, A.; Rivas, M.; Iwanaga, M. Multiplex PCR assay for identification of human diarrheagenic Escherichia coli. J. Clin. Microbiol. 2003, 41, 2669–2671. [Google Scholar] [CrossRef]
- Low, A.S.; Holden, N.; Rosser, T.; Roe, A.J.; Constantinidou, C.; Hobman, J.L.; Smith, D.G.E.; Low, J.C.; Gally, D.L. Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ. Microbiol. 2006, 8, 1033–1047. [Google Scholar] [CrossRef]
- Adetunji, V.O.; Kehinde, A.O.; Bolatito, O.K.; Chen, J. Biofilm formation by Mycobacterium bovis: Influence of surface kind and temperatures of sanitizer treatments on biofilm control. BioMed Res. Int. 2014, 2014, 210165. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Dawn Dish Soap Ingredients. Available online: https://dawn-dish.com/en-us/how-to/what-dawn-is-made-of-ingredients/ (accessed on 22 March 2024).
- Schnarrenberger, A. A Comparison of Gecko Adhesion on Soft Substrates. Williams Honors College, Honors Research Projects. 724. 2018. Available online: https://ideaexchange.uakron.edu/honors_research_projects/724 (accessed on 30 January 2024).
- Kinloch, A.J.; Kinloch, A.J. Adhesion and Adhesives: Science and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1987; pp. 56–100. [Google Scholar]
- Bhowmick, A.K.; Konar, J.; Kole, S.; Narayanan, S. Surface properties of EPDM, silicone rubber, and their blend during aging. J. Appl. Polym. Sci. 1995, 57, 631–637. [Google Scholar] [CrossRef]
- Chen, J.; Rossman, M.L.; Pawar, D.M. Attachment of enterohemorrhagic Escherichia coli. LWT—Food Sci. Technol. 2005, 39, 418–425. [Google Scholar] [CrossRef]
- Paul Degarmo, E.; Black, J.T.; Kohser, R.A. Materials and Processes in Manufacturing, 9th ed.; John Wiley & Sons: London, UK, 2003; pp. 25–144. ISBN 0-471-65653-4. [Google Scholar]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.-E.; He, L.; Heo, J.; Hwang, G. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef] [PubMed]
- Yasmine, A.; Swailesa, D.; Bridgens, B.; Chen, J. Influence of surface roughness on the initial formation of biofilm. Surf. Coat. Technol. 2015, 284, 410–416. [Google Scholar] [CrossRef]
- Maile, S.J. An Investigation into Alternative Materials to Silicone Rubber for Reducing Candida Albicans Biofilm Formation in in-Dwelling Urinary Catheters. 2020. Available online: https://clok.uclan.ac.uk/38707/1/38707%20FULL_THING_FINALCOPY.pdf (accessed on 30 January 2024).
- Hutchins, C.F.; Moore, G.; Webb, J.; Walker, J.T. Investigating alternative materials to EPDM for automatic taps in the context of Pseudomonas aeruginosa and biofilm control. J. Hosp. Infect. 2020, 106, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Noble, P.C.; Pidgaiska, O.; Arciola, C.R.; Coffman, Z.; Stephens, S.; Ismaily, S.; Blackwell, R.; Campoccia, D.; Montanaro, L. What Surface Properties Favor Biofilm Formation? 2021. Available online: https://www.ors.org/wp-content/uploads/2018/11/Biofilm-Question-2.pdf (accessed on 30 January 2024).
- Bogino, P.C.; Oliva, M.D.L.M.; Sorroche, F.G.; Giordano, W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int. J. Mol. Sci. 2013, 14, 15838–15859. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Quansah, J.K.; Pitts, K.B.; Chen, J. Hygiene status of fresh peach packing lines in Georgia. LWT—Food Sci. Technol. 2021, 139, 110627. [Google Scholar] [CrossRef]
- Chauret, C.; Sanitization, P.; Batt, C.A.; Tortorello, M.L. Encyclopedia of Food Microbiology, 2nd ed.; Academic Press: Oxford, UK, 2014; pp. 360–364. [Google Scholar]
- Ao, X.-W.; Eloranta, J.; Huang, C.-H.; Santoro, D.; Sun, W.-J.; Lu, Z.-D.; Li, C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Res. 2021, 188, 116479. [Google Scholar] [CrossRef] [PubMed]
Inoculum | Isolate ID | Year of Isolation | Source of Isolation |
---|---|---|---|
I | 1212 | 2015 | Fresh fruits |
II | 1238/1243/2470 | 2017 | Hand gloves |
III | 2901/2902 | 2017 | Packing lines |
IV | 2561 | 2015 | Packing lines |
V | 177/178 | 2015 | Harvest machines |
Primer | Target | Primer Sequence | Amplicon (bp) |
---|---|---|---|
SK1 SK2 | eae | CCCGAATTCGGCACAAGCATAAGC CCCGGATCCGTCTCGCCAGTATTCG | 881 |
VT com-u VT com-d | stx | GAGCGAAATAATTTATATGTG TGATGATGGCAATTCAGTAT | 518 |
AL 65 AL 125 | est | TTAATAGCACCCGGTACAAGCAGG CCTGACTCTTCAAAAGAGAAAATTAC | 147 |
LTL LTR | elt | TCTCTATGTGCATACGGAGC CCATACTGATTGCCGCAAT | 322 |
Ipa III ipa IV | ipaH | GTTCCTTGACCGCCTTTCCGATACCGTC GCCGGTCAGCCACCCTCTGAGAGTAC | 619 |
aggRks1 aggRkas2 | aggR | GTATACACAAAAGAAGGAAGC ACAGAATCGTCAGCATCAGC | 254 |
Loc 1 | stcA | 5′-CGACAACGTTGATGTTTAGC 3′-GCCTTTTGTAACAGGATTGC | 300–500 |
Loc 2 | yadN | 5′-GGTATGCATAGCGTTACC 3′-CTGCTGGCAAATCTTATGC | 300–500 |
Loc 3 | sfmA | 5′-GCGGTACAATTCACTTTGAAGG 3′-CATTTGCTTGCCCTGCTGATGC | 300–500 |
Loc 4 | ybgD | 5′-GCCATATCTCTACTATTCGC 3′-GTTATCCATCTGTTCCATCC | 300–500 |
Loc 5 | ycbQ | 5′-CTGTGGTATGTGCAACGTCC 3′-CCCCGTAGCGATATAATCAAC | 300–500 |
Loc 6 | sfaA | 5′-CCTACAGTCACTTTTCAGGG 3′-GATTAATTAGAGGTAGCTCAGG | 300–500 |
Loc 7 | csgA | 5′-CTTCATTTAATCAGGCAGCC 3′-GAGTACCATACTGTGTAATATTTGC | 300–500 |
Loc 8 | fimA | 5′-GGTGATGAATCAGTAACGACC 3′-GTGCCATCAATCAAGTCGG | 300–500 |
Loc 9 | yehD | 5′-CACCATGTACATTTGTCGC 3′-CAGTACGTCACTGCTATCTCC | 300–500 |
Loc 10 | stfG | 5′-GCTGCAACAATGGTAATGGG 3′-GTAATCTGGAAGGTCGTGTTGGC | 300–500 |
Loc 11 | yraH | 5′-CTTTTCGCAGGTAATGCCG 3′-GATTTCGGATGCTTCAACG | 300–500 |
Loc 12 | lpfA | 5′-GTGGTATCGCAATCTTCC 3′-GGTAAAGTAGAGAACCG | 300–500 |
Loc 13 | lpfA | 5′-GATTGTAGGAGCATTAGCG 3′-CTATCGATCTGACTCAATGCC | 300–500 |
Loc 14 | fimA | 5′-GTCGTTGCTGCCAATGTTTGC 3′-GAAATGTAGCGAAGTAGAGCC | 300–500 |
Putative Adhesin Genes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
stcA | yadN | sfmA | ybgD | ycbQ | sfaA | csgA | fimA | yehD | stfG | yraH | lpfA | lpfA | fimA | |
177 | + | + | + | + | + | + | + | - | - | + | - | - | - | + |
178 | + | + | + | + | + | - | + | - | - | + | + | - | - | + |
1212 | - | - | + | - | + | - | + | + | - | + | + | + | + | + |
1238 | + | - | + | + | + | + | + | + | - | + | - | - | - | + |
1243 | - | - | + | - | + | - | + | + | - | + | + | - | - | + |
2470 | - | - | + | - | + | - | + | + | - | - | + | - | - | + |
2561 | - | - | + | - | + | - | + | - | - | - | + | - | - | + |
2901 | - | - | + | + | + | - | + | - | - | - | + | - | - | + |
2902 | - | - | + | + | + | - | + | - | - | - | - | - | - | + |
% | 33.3 | 22.2 | 100.0 | 55.6 | 100.0 | 22.2 | 100.0 | 44.4 | 0.0 | 55.6 | 66.7 | 11.1 | 11.1 | 100.0 |
Source | Num DF | Den DF | F Value | Pr > F |
---|---|---|---|---|
Surface | 4 | 48 | 8.97 | <0.0001 |
Culture | 4 | 48 | 1.82 | 0.1413 |
Surface*culture | 16 | 48 | 0.86 | 0.6203 |
Num DF | Den DF | F Value | Pr > F | |
---|---|---|---|---|
Surface | 4 | 147 | 26.61 | <0.0001 |
Treatment | 3 | 147 | 4.83 | 0.0031 |
Culture | 4 | 147 | 35.88 | <0.0001 |
Surface*treatment | 12 | 147 | 5.71 | <0.0001 |
Surface*culture | 16 | 147 | 5.60 | <0.0001 |
Treatment*culture | 12 | 147 | 1.26 | 0.2484 |
Biofilm Mass (A550) | |||||
---|---|---|---|---|---|
Bacterial Cultures or Culture Mixes | I | II | III | IV | V |
Surface coupons | |||||
EPDM (n = 8) | 0.8971 Aa | 0.3877 Ab | 0.2421 Abc | 0.2060 Ac | 0.1224 Ac |
Plexiglass (n = 8) | 0.3922 Ca | 0.1342 Bb | 0.1053 ABb | 0.0551 Bb | 0.0098 Ab |
Neoprene (n = 8) | 0.1789 Da | 0.1259 Bab | 0.0797 Bab | 0.0817 ABab | 0.0073 Ab |
Red silicone (n = 8) | 0.0619 Da | 0.1288 Ba | 0.0316 Ba | 0.0216 Ba | 0.0910 Aa |
White Silicone (n = 8) | 0.5399 Ba | 0.1463 Bb | 0.0801 Bb | 0.1050 ABb | 0.1244 Ab |
Biofilm Residue (A500) | ||||
---|---|---|---|---|
Treatment | NaOCl | Peracetic Acid | Alphet D2 | Dish Soap |
Surface coupons | ||||
EPDM (n = 8) | 0.5886 Aa | 0.5453 Aa | 0.2293 ABb | 0.1211 Ab |
Plexiglass (n = 8) | 0.0724 Ba | 0.1885 Ba | 0.1249 BCa | 0.1714 Aa |
Neoprene (n = 8) | 0.1329 Ba | 0.0711 Ba | 0.1066 BCa | 0.0682 Aa |
Red silicone (n = 8) | 0.0693 Ba | 0.0826 Ba | 0.0590 Ca | 0.0524 Aa |
White silicone (n = 8) | 0.1920 Ba | 0.1600 Ba | 0.2874 Aa | 0.1571 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Hur, M.; DeVetter, L.W.; Takeda, F.; Chen, J. Formation/Removal of Biofilms on/from Coupons of Selected Food-Grade Elastomeric Polymers vs. Plexiglass Used for the Fruit-Catching Plates of OTR Blueberry Machine Harvesters. Hygiene 2024, 4, 146-156. https://doi.org/10.3390/hygiene4020011
Wang P, Hur M, DeVetter LW, Takeda F, Chen J. Formation/Removal of Biofilms on/from Coupons of Selected Food-Grade Elastomeric Polymers vs. Plexiglass Used for the Fruit-Catching Plates of OTR Blueberry Machine Harvesters. Hygiene. 2024; 4(2):146-156. https://doi.org/10.3390/hygiene4020011
Chicago/Turabian StyleWang, Peien, Minji Hur, Lisa Wasko DeVetter, Fumiomi Takeda, and Jinru Chen. 2024. "Formation/Removal of Biofilms on/from Coupons of Selected Food-Grade Elastomeric Polymers vs. Plexiglass Used for the Fruit-Catching Plates of OTR Blueberry Machine Harvesters" Hygiene 4, no. 2: 146-156. https://doi.org/10.3390/hygiene4020011
APA StyleWang, P., Hur, M., DeVetter, L. W., Takeda, F., & Chen, J. (2024). Formation/Removal of Biofilms on/from Coupons of Selected Food-Grade Elastomeric Polymers vs. Plexiglass Used for the Fruit-Catching Plates of OTR Blueberry Machine Harvesters. Hygiene, 4(2), 146-156. https://doi.org/10.3390/hygiene4020011