Antimicrobial Properties of Basil (Ocimum basilicum L.), Sage (Salvia officinalis L.), Lavender (Lavandula officinalis L.), Immortelle (Helichrysum italicum (Roth) G. Don), and Savory (Satureja montana L.) and Their Application in Hard Cheese Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Extracts
2.2. Antimicrobial Activity of Plant Extracts Tested by Agar Disk Diffusion
2.3. Antimicrobial Activity of Plants and Extracts on Dairy Starter Culture
2.4. Cheese Production and Analyses
2.4.1. Microbiological Analyses of Cheese
2.4.2. Molecular Detection of Molds
2.4.3. Determination of Mycotoxins
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antibacterial Capacity of Plant Extracts
3.2. Microbiological Properties of Cheeses Produced with Dried Plants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef]
- Silva, N.; Alves, S.; Gonçalves, A.; Amaral, J.S.; Poeta, P. Antimicrobial activity of essential oils from mediterranean aromatic plants against several foodborne and spoilage bacteria. Food Sci. Technol. Int. 2013, 19, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.; Gonçalves, S.; Romano, A. Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods 2023, 12, 840. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, S.M.; Rasooli, I.; Owlia, P.; Taghizadeh, M.; Astaneh, S.D.A. Protective effects of bioactive phytochemicals from Mentha piperita with multiple health potentials. Pharmacogn. Mag. 2010, 6, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Adigüzel, A.; Güllüce, M.; Şengül, M.; Öğütçü, H.; Şahin, F. Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turk. J. Biol. 2005, 29, 155–160. [Google Scholar]
- Kaya, I.; Yigit, N.; Benli, M. Antimicrobial Activity of Various Extracts of Ocimum basilicum L. and Observation of the Inhibition Effect on Bacterial Cells by Use of Scanning Electron Microscopy. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, A.M.D.; Shayegh, J.; Mikaili, P.; Sharaf, J.D. Antimicrobial activity of essential oil extract of Ocimum basilicum L. leaves on a variety of pathogenic bacteria. J. Med. Plants Res. 2011, 5, 3453–3456. [Google Scholar]
- Silva, V.A.; Sousa, J.P.; Pessôa, H.L.F.; Freitas, A.F.R.; Coutinho, H.D.M.; Alves, L.B.N.; Lima, E.O. Ocimum basilicum: Antibacterial activity and association study with antibiotics against bacteria of clinical importance. Pharm. Biol. 2016, 54, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Amor, G.; Sabbah, M.; Caputo, L.; Idbella, M.; De Feo, V.; Porta, R.; Fechtali, T.; Mauriello, G. Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods 2021, 10, 121. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Farahpour, M.R.; Pirkhezr, E.; Ashrafian, A.; Sonboli, A. Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model. Biomed. Pharmacother. 2020, 128, 110120. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Kasapidou, E.; Mitlianga, P.; Mataragas, M.; Pappa, E.; Kondyli, E.; Bosnea, L. Production, characteristics and application of whey protein films activated with rosemary and sage extract in preserving soft cheese. LWT Food Sci. Technol. 2022, 115, 112996. [Google Scholar] [CrossRef]
- Vukić, V.; Vukić, D.; Pavlić, B.; Iličić, M.; Kocić-Tanackov, S.; Kanurić, K.; Bjekić, M.; Zeković, Z. Antimicrobial potential of kombucha fresh cheese with the addition of sage (Salvia officinalis L.) and its preparations. Food Funct. 2023, 14, 3348. [Google Scholar] [CrossRef] [PubMed]
- Speranza, B.; Guerrieri, A.; Racioppo, A.; Bevilacqua, A.; Campaniello, D.; Corbo, M.R. Sage and Lavender Essential Oils as Potential Antimicrobial Agents for Foods. Microbiol. Res. 2023, 14, 1089–1113. [Google Scholar] [CrossRef]
- Gouveia, A.R.; Alves, M.; Silva, J.A.; Saraiva, C. The Antimicrobial Effect of Rosemary and Thyme Essential Oils Against Listeria monocytogenes in Sous Vide Cook-Chill Beef During Storage. Procedia Food Sci. 2016, 7, 173–176. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Viegas, D.A.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. 2013, 151, 54–65. [Google Scholar] [CrossRef]
- Mekinić, I.G.; Skroza, D.; Ljubenkov, I.; Krstulović, L.; Možina, S.S.; Katalinić, V. Phenolic Acids Profile, Antioxidant and Antibacterial Activity of Chamomile, Common Yarrow and Immortelle (Asteraceae). Nat. Prod. Commun. 2014, 9, 1745–1748. [Google Scholar] [CrossRef] [PubMed]
- Malenica Staver, M.; Gobin, I.; Ratkaj, I.; Petrovic, M.; Vulinovic, A.; Dinarina-Sablic, M.; Broznic, D. In vitro Antiproliferative and Antimicrobial Activity of the Essential Oil from the Flowers and Leaves of Helichrysum italicum (Roth) G. Don Growing in Central Dalmatia (Croatia). J. Essent. Oil Bear. Plants 2018, 21, 77–91. [Google Scholar] [CrossRef]
- Muñoz-Tebar, N.; González-Navarro, E.J.; López-Díaz, T.M.; Santos, J.A.; Elguea-Culebras, G.O.d.; García-Martínez, M.M.; Molina, A.; Carmona, M.; Berruga, M.I. Biological Activity of Extracts from Aromatic Plants as Control Agents against Spoilage Molds Isolated from Sheep Cheese. Foods 2021, 10, 1576. [Google Scholar] [CrossRef]
- Oštarić, F.; Antunac, N.; Cubric-Curik, V.; Curik, I.; Jurić, S.; Kazazić, S.; Kiš, M.; Vinceković, M.; Zdolec, N.; Špoljarić, J.; et al. Challenging Sustainable and Innovative Technologies in Cheese Production: A Review. Processes 2022, 10, 529. [Google Scholar] [CrossRef]
- Ritota, M.; Manzi, P. Natural Preservatives from Plant in Cheese Making. Animals 2020, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Gammariello, D.; Di Giulio, S.; Conte, A.; Del Nobile, M.A. Effects of Natural Compounds on Microbial Safety and Sensory Quality of Fior di Latte Cheese, a Typical Italian Cheese. J. Dairy Sci. 2008, 91, 4138–4146. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Barros, L.; Barreira, J.C.M.; Calhelha, R.C.; Soković, M.; Fernández-Ruiz, V.; Santos Buelga, C.; Morales, P.; Ferreira, I.C.F.R. Basil as functional and preserving ingredient in “Serra da Estrela” cheese. Food Chem. 2016, 207, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Hala, M.F.E.D.; Ebtisam, I.G.; Sanaa, M.A.B.; Gad, A.S.; Marwa, M.E.S. Manufacture of Low Fat UF-Soft Cheese Supplemented with Rosemary Extract (as Natural Antioxidant). J. Am. Sci. 2010, 6, 570–579. [Google Scholar]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of sensory and chemical properties in flavoured cheese prepared with cream cheese base using oregano and rosemary essential oils. LWT Food Sci. Technol. 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Moro, A.; Librán, C.M.; Berruga, M.I.; Carmona, M.; Zalacain, A. Dairy matrix effect on the transference of rosemary (Rosmarinus officinalis) essential oil compounds during cheese making. J. Sci. Food Agric. 2015, 95, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Caleja, C.; Barros, L.; Santos-Buelga, C.; Barreiro, M.F.; Ferreira, I.C.F.R. Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food Funct. 2016, 7, 2185–2196. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.M.; Kassem, J.M.; Mohamed, S.H.S.; Zaky, W.M. Quality appraisal of ultra-filtered soft buffalo cheese using basil essential oil. Acta Sci. Pol. Technol. Aliment. 2018, 17, 305–312. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 °C. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 21528-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6881-1:2021; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species). International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 15213-1:2023; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Clostridium spp. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 11290-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella. International Organization for Standardization: Geneva, Switzerland, 2017.
- Lešić, T.; Vahčić, N.; Kos, I.; Zadravec, M.; Milićević, D.; Perković, I.; Listeš, E.; Pleadin, J. The Influence of Surface Mycobiota on Sensory Properties of “Istarski pršut” and “Dalmatinski pršut”. Processes 2021, 9, 2287. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Tavares, T.D.; Antunes, J.C.; Padrão, J.; Ribeiro, A.I.; Zille, A.; Amorim, M.T.P.; Ferreira, F.; Felgueiras, H.P. Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria. Antibiotics 2020, 9, 314. [Google Scholar] [CrossRef] [PubMed]
- Djeussi, D.E.; Noumedem, J.A.; Seukep, J.A.; Fankam, A.G.; Voukeng, I.K.; Tankeo, S.B.; Nkuete, A.H.L.; Kuete, V. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 2013, 13, 164. [Google Scholar] [CrossRef]
- Piras, C.; Tilocca, B.; Castagna, F.; Roncada, P.; Britti, D.; Palma, E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics 2022, 11, 919. [Google Scholar] [CrossRef]
- Oppedisano, F.; De Fazio, R.; Gugliandolo, E.; Crupi, R.; Palma, E.; Abbas Raza, S.H.; Tilocca, B.; Merola, C.; Piras, C.; Britti, D. Mediterranean Plants with Antimicrobial Activity against Staphylococcus aureus, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2023, 11, 2264. [Google Scholar] [CrossRef] [PubMed]
- Rožman, T.; Jeršek, B. Antimicrobial activity of rosemary extracts (Rosmarinus officinalis L.) against different species of Listeria. Acta Agric. Slov. 2009, 93, 51–58. [Google Scholar] [CrossRef]
- Ceruso, M.; Clement, J.A.; Todd, M.J.; Zhang, F.; Huang, Z.; Anastasio, A.; Pepe, T.; Liu, Y. The Inhibitory Effect of Plant Extracts on Growth of the Foodborne Pathogen, Listeria monocytogenes. Antibiotics 2020, 9, 319. [Google Scholar] [CrossRef]
- Selim, S. Antimicrobial activity of essential oils against vancomycin-resistant enterococci (VRE) and Escherichia coli O157:H7 in feta soft cheese and minced beef meat. Braz. J. Microbiol. 2011, 42, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Çelik, R.; Kiray, E.; Kariptaş, E. Determination of Antimicrobial Activity of Various Plant Essential Oils on Vancomycin Resistant Enterococci (VRE) and Some Pathogenic Microorganisms. Black Sea J. Health Sci. 2021, 4, 26–34. [Google Scholar] [CrossRef]
- Duraisamy, S.; Backiam, A.D.S.; Raju, A.; Ranjith, S.; Kumarasamy, A.; Balakrishnan, S. In silico and in vitro analysis of bioactive compounds extracted from Ocimum basilicum against vancomycin-resistant enterococci. Chem. Phys. Impact 2024, 8, 100499. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Salem, R.D.S.; Mortazavian, A.M.; Rocha, R.S.; Cruz, A.G. Effects of herbal extracts on quality traits of yogurts, cheeses, fermented milks, and ice creams: A technological perspective. Curr. Opin. Food Sci. 2018, 19, 1–7. [Google Scholar] [CrossRef]
- Marcial, G.E.; Gerez, C.L.; Kairuza, M.N.; Araoz, V.C.; Schuff, C.; Valdez, G.F. Influence of oregano essential oil on traditional Argentinean cheese elaboration: Effect on lactic starter cultures. Rev. Argent. De Microbiol. 2016, 48, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Asli, M.Y.; Khorshidian, N.; Mortazavian, A.M.; Hosseini, H. A Review on the Impact of Herbal Extracts and Essential Oils on Viability of Probiotics in Fermented Milks. Curr. Nutr. Food Sci. 2017, 13, 6–15. [Google Scholar] [CrossRef]
- Vrdoljak, J.; Dobranić, V.; Filipović, I.; Zdolec, N. Microbiological Quality of Soft, Semi-Hard and Hard Cheeses during the Shelf-Life. Maced. Vet. Rev. 2016, 29, 59–64. [Google Scholar] [CrossRef]
- Dhama, K.; Sharun, K.; Gugjoo, M.B.; Tiwari, R.; Alagawany, M.; Yatoo, M.I.; Thakur, P.; Iqbal, H.M.N.; Chaicumpa, W.; Michalak, I.; et al. A Comprehensive Review on Chemical Profile and Pharmacological Activities of Ocimum basilicum. Food Rev. Int. 2023, 39, 119–147. [Google Scholar] [CrossRef]
- Azizkhani, M.; Tooryan, F.; Boreiry, M. Effects of Ocimum basilicum and Salvia sclarea essential oils on Listeria monocytogenes and Aspergillus flavus in Iranian white cheese. Iran. Food Sci. Technol. Res. J. 2016, 12, 286–295. [Google Scholar] [CrossRef]
- Hlebová, M.; Foltinová, D.; Vešelényiová, D.; Medo, J.; Šramková, Z.; Tančinová, D.; Mrkvová, M.; Hleba, L. The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese. Foods 2022, 11, 3517. [Google Scholar] [CrossRef] [PubMed]
- Zadravec, M.; Markov, K.; Frece, J.; Perković, I.; Jakopović, Ž.; Lešić, T.; Mitak, M.; Pleadin, J. Toxicogenic fungi and the occurrence of mycotoxins in traditional meat products. Croat. J. Food Sci. Technol. 2019, 11, 272–282. [Google Scholar] [CrossRef]
- Kure, C.F.; Skar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Decontardi, S.; Mauro, A.; Lima, N.; Battilani, P. Survey of Penicillia associated with Italian grana cheese. Int. J. Food Microbiol. 2017, 246, 25–31. [Google Scholar] [CrossRef]
- Perrone, G.; Samson, R.A.; Frisvad, J.C.; Susca, A.; Gunde-Cimerman, N.; Epifani, F.; Houbraken, J. Penicillium salamii, a new species occurring during seasoning of dry-cured meat. Int. J. Food Microbiol. 2015, 193, 91–98. [Google Scholar] [CrossRef] [PubMed]
Basil | Sage | Lavender | Rosemary | Immortelle | Savory | |
---|---|---|---|---|---|---|
Salmonella Infantis 78 | - | - | - | + | - | + |
Salmonella Infantis 186 | - | - | - | - | - | + |
Salmonella Infantis 81 | - | - | - | - | - | + |
Salmonella Infantis 94 | - | + | - | - | - | + |
ermA+ Staphylococcus haemolyticus 422 | + | ++ | - | ++ | +++ | - |
ermC+ Staphylococcus haemolyticus 231 | ++ | +++ | + | +++ | +++ | + |
Staphylococcus aureus ATCC 25923 | +++ | +++ | ++ | +++ | +++ | - |
Yersinia enterocolitica 4/O:3 | ++ | ++ | - | ++ | ++ | + |
Listeria innocua ATCC 33090 | - | - | - | + | - | - |
Listeria welshimeri | - | - | - | + | - | - |
Listeria ivanovii ATCC 19111 | - | - | - | - | - | - |
Listeria innocua | - | - | - | - | - | - |
Listeria monocytogenes NCTC 10527 | - | - | + | - | - | - |
Listeria monocytogenes ATCC 7644 | - | - | - | - | - | - |
vanB+ Enterococcus faecalis | - | ++ | - | ++ | ++ | - |
vanA+ Enterococcus faecium | - | + | - | ++ | ++ | - |
VR Enterococcus faecium | - | + | - | ++ | ++ | - |
Parameter (log10 CFU/g) | Basil | Sage | Lavender | Immortelle | Savory | Control Cheese |
---|---|---|---|---|---|---|
Total viable count | 7.06 ± 0.71 | 7.23 ± 0.19 | 6.85 ± 0.76 a | 7.38 ± 0.08 a | 6.96 ± 0.28 | 7.30 ± 0.15 |
Lactic acid bacteria | 6.98 ± 0.16 | 7.28 ± 0.39 | 6.50± 0.57 b | 7.87 ± 0.03 b | 7.45 ± 0.20 | 7.69 ± 0.21 |
Enterococci | 1.63 ± 0.22 | 3.63 ± 0.13 c | 2.97 ± 0.45 | 1.62 ± 0.21 c | 2.72 ± 0.76 | 2.43 ± 0.10 |
Yeasts and molds | <2.00 d | 1.74 ± 1.19 | 2.21 ± 1.47 | 3.00 ± 0.00 | 3.09 ± 0.58 | 3.30 ± 0.10 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdolec, N.; Franičević, M.; Klanac, L.; Kavain, I.; Batinić, J.; Zadravec, M.; Pleadin, J.; Čobanov, D.; Kiš, M. Antimicrobial Properties of Basil (Ocimum basilicum L.), Sage (Salvia officinalis L.), Lavender (Lavandula officinalis L.), Immortelle (Helichrysum italicum (Roth) G. Don), and Savory (Satureja montana L.) and Their Application in Hard Cheese Production. Hygiene 2024, 4, 135-145. https://doi.org/10.3390/hygiene4020010
Zdolec N, Franičević M, Klanac L, Kavain I, Batinić J, Zadravec M, Pleadin J, Čobanov D, Kiš M. Antimicrobial Properties of Basil (Ocimum basilicum L.), Sage (Salvia officinalis L.), Lavender (Lavandula officinalis L.), Immortelle (Helichrysum italicum (Roth) G. Don), and Savory (Satureja montana L.) and Their Application in Hard Cheese Production. Hygiene. 2024; 4(2):135-145. https://doi.org/10.3390/hygiene4020010
Chicago/Turabian StyleZdolec, Nevijo, Marijana Franičević, Lucija Klanac, Ivana Kavain, Josip Batinić, Manuela Zadravec, Jelka Pleadin, Darko Čobanov, and Marta Kiš. 2024. "Antimicrobial Properties of Basil (Ocimum basilicum L.), Sage (Salvia officinalis L.), Lavender (Lavandula officinalis L.), Immortelle (Helichrysum italicum (Roth) G. Don), and Savory (Satureja montana L.) and Their Application in Hard Cheese Production" Hygiene 4, no. 2: 135-145. https://doi.org/10.3390/hygiene4020010
APA StyleZdolec, N., Franičević, M., Klanac, L., Kavain, I., Batinić, J., Zadravec, M., Pleadin, J., Čobanov, D., & Kiš, M. (2024). Antimicrobial Properties of Basil (Ocimum basilicum L.), Sage (Salvia officinalis L.), Lavender (Lavandula officinalis L.), Immortelle (Helichrysum italicum (Roth) G. Don), and Savory (Satureja montana L.) and Their Application in Hard Cheese Production. Hygiene, 4(2), 135-145. https://doi.org/10.3390/hygiene4020010