The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2
Abstract
1. Introduction
2. Oral Antiseptic Mouthwashes
3. In vitro Studies assessing Virucidal Activity
4. Safety of Antiseptic Mouthwashes
5. Effectiveness of Oral Antiseptic Mouthwashes
6. Other Effects of Mouthwashes on SARS-CoV-2
7. Biocide Resistance of Mouthwashes
8. Limitations of In Vitro Studies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ting, M.; Suzuki, J.B. SARS-CoV-2: Overview and Its Impact on Oral Health. Biomedicines 2021, 9, 1690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis 2020, 92, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020, 382, 1177–1179. [Google Scholar] [CrossRef] [PubMed]
- Sungnak, W.; Huang, N.; Becavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-Lopez, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Harrel, S.K.; Molinari, J. Aerosols and splatter in dentistry: A brief review of the literature and infection control implications. J. Am. Dent. Assoc. 2004, 135, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Micik, R.E.; Miller, R.L.; Mazzarella, M.A.; Ryge, G. Studies on dental aerobiology. I. Bacterial aerosols generated during dental procedures. J. Dent. Res. 1969, 48, 49–56.e11. [Google Scholar] [CrossRef] [PubMed]
- Enciso, R.; Keaton, J.; Saleh, N.; Ahmadieh, A.; Clark, G.T.; Sedghizadeh, P.P. Assessing the utility of serum C-telopeptide cross-link of type 1 collagen as a predictor of bisphosphonate-related osteonecrosis of the jaw: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2016, 147, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Bordea, I.R.; Xhajanka, E.; Candrea, S.; Bran, S.; Onisor, F.; Inchingolo, A.D.; Malcangi, G.; Pham, V.H.; Inchingolo, A.M.; Scarano, A.; et al. Coronavirus (SARS-CoV-2) Pandemic: Future Challenges for Dental Practitioners. Microorganisms 2020, 8, 1704. [Google Scholar] [CrossRef] [PubMed]
- Wolfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Muller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis 2020, 20, 565–574. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef]
- Bordea, I.R.; Candrea, S.; Salagean, T.; Pop, I.D.; Lucaciu, O.; Ilea, A.; Manole, M.; Babtan, A.M.; Sirbu, A.; Hanna, R. Impact of COVID-19 Pandemic on Healthcare Professionals and Oral Care Operational Services: A Systemic Review. Risk Manag. Healthc. Policy 2021, 14, 453–463. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Malcangi, G.; Xhajanka, E.; Scarano, A.; Lorusso, F.; Farronato, M.; Tartaglia, G.M.; Isacco, C.G.; et al. SARS-CoV-2 Disease through Viral Genomic and Receptor Implications: An Overview of Diagnostic and Immunology Breakthroughs. Microorganisms 2021, 9, 793. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.; Buczkowski, H.; Welch, S.R.; Green, N.; Mawer, D.; Woodford, N.; Roberts, A.D.G.; Nixon, P.J.; Seymour, D.W.; Killip, M.J. Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes. J. Gen. Virol. 2021, 102, 001578. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.E.; Sivalingam, V.; Kang, A.E.Z.; Ananthanarayanan, A.; Arumugam, H.; Jenkins, T.M.; Hadjiat, Y.; Eggers, M. Povidone-Iodine Demonstrates Rapid In Vitro Virucidal Activity Against SARS-CoV-2, The Virus Causing COVID-19 Disease. Infect. Dis. Ther. 2020, 9, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Bidra, A.S.; Pelletier, J.S.; Westover, J.B.; Frank, S.; Brown, S.M.; Tessema, B. Comparison of In Vitro Inactivation of SARS CoV-2 with Hydrogen Peroxide and Povidone-Iodine Oral Antiseptic Rinses. J. Prosthodont. 2020, 29, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Bidra, A.S.; Pelletier, J.S.; Westover, J.B.; Frank, S.; Brown, S.M.; Tessema, B. Rapid In-Vitro Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Using Povidone-Iodine Oral Antiseptic Rinse. J. Prosthodont. 2020, 29, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Hassandarvish, P.; Tiong, V.; Mohamed, N.A.; Arumugam, H.; Ananthanarayanan, A.; Qasuri, M.; Hadjiat, Y.; Abubakar, S. In vitro virucidal activity of povidone iodine gargle and mouthwash against SARS-CoV-2: Implications for dental practice. Br. Dent. J. 2020, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kariwa, H.; Fujii, N.; Takashima, I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology 2006, 212 (Suppl. 1), 119–123. [Google Scholar] [CrossRef] [PubMed]
- Koch-Heier, J.; Hoffmann, H.; Schindler, M.; Lussi, A.; Planz, O. Inactivation of SARS-CoV-2 through Treatment with the Mouth Rinsing Solutions ViruProX((R)) and BacterX((R)) Pro. Microorganisms 2021, 9, 521. [Google Scholar] [CrossRef]
- Komine, A.; Yamaguchi, E.; Okamoto, N.; Yamamoto, K. Virucidal activity of oral care products against SARS-CoV-2 in vitro. J. Oral. Maxillofac. Surg. Med. Pathol. 2021, 33, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Meister, T.L.; Bruggemann, Y.; Todt, D.; Conzelmann, C.; Muller, J.A.; Gross, R.; Munch, J.; Krawczyk, A.; Steinmann, J.; Steinmann, J.; et al. Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2. J. Infect. Dis. 2020, 222, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, H.; Mendenhall, M. Comparative Analysis of Antiviral Efficacy of Four Different Mouthwashes against Severe Acute Respiratory Syndrome Coronavirus 2: An In Vitro Study. Int. J. Exp. Dent. Sci. 2020, 9, 1–3. [Google Scholar] [CrossRef]
- Pelletier, J.S.; Tessema, B.; Frank, S.; Westover, J.B.; Brown, S.M.; Capriotti, J.A. Efficacy of Povidone-Iodine Nasal and Oral Antiseptic Preparations Against Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). Ear. Nose. Throat. J. 2021, 100, 192S–196S. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; da Fonseca Orcina, B.; Brito Reia, V.C.; Ribeiro, L.G.; Grotto, R.M.T.; Prudenciatti, A.; de Moraes, L.N.; Ragghianti Zangrando, M.; Vilhena, F.V.; da Silva Santos, P.S. Virucidal Activity of the Antiseptic Mouthwash and Dental Gel Containing Anionic Phthalocyanine Derivative: In vitro Study. Clin. Cosmet. Investig. Dent. 2021, 13, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Shet, M.; Westover, J.; Hong, R.; Igo, D.; Cataldo, M.; Bhaskar, S. In vitro inactivation of SARS-CoV-2 using a povidone-iodine oral rinse. BMC Oral Health 2022, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Shewale, J.G.; Gelhaus, H.C.; Ratcliff, J.L.; Hernandez-Kapila, Y.L. In vitro antiviral activity of stabilized chlorine dioxide containing oral care products. Oral Dis. 2021, 00, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, K.; Meister, T.L.; Todt, D.; Krawczyk, A.; Passvogel, L.; Becker, B.; Paulmann, D.; Bischoff, B.; Pfaender, S.; Brill, F.H.H.; et al. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J. Hosp. Infect. 2021, 111, 180–183. [Google Scholar] [CrossRef]
- Tiong, V.; Hassandarvish, P.; Bakar, S.A.; Mohamed, N.A.; Wan Sulaiman, W.S.; Baharom, N.; Abdul Samad, F.N.; Isahak, I. The effectiveness of various gargle formulations and salt water against SARS-CoV-2. Sci. Rep. 2021, 11, 20502. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Koburger-Janssen, T.; Eickmann, M.; Zorn, J. In Vitro Bactericidal and Virucidal Efficacy of Povidone-Iodine Gargle/Mouthwash Against Respiratory and Oral Tract Pathogens. Infect. Dis. Ther. 2018, 7, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Spearman, C. The method of ‘Right and Wrong cases’ (“Constant Stimuli”) without Gauss’s Formulae. Br. J. Psychol. 1908, 2, 227–242. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Für Exp. Pathol. Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Rupel, K.; Ottaviani, G.; Gobbo, M.; Contardo, L.; Tirelli, G.; Vescovi, P.; Di Lenarda, R.; Biasotto, M. A systematic review of therapeutical approaches in bisphosphonates-related osteonecrosis of the jaw (BRONJ). Oral Oncol. 2014, 50, 1049–1057. [Google Scholar] [CrossRef]
- Yasumura, Y.; Kawakita, M. The research for the SV40 by means of tissue culture technique. Nippon. Rinsho. 1963, 21, 1201–1219. [Google Scholar]
- Banerjee, A.; Nasir, J.A.; Budylowski, P.; Yip, L.; Aftanas, P.; Christie, N.; Ghalami, A.; Baid, K.; Raphenya, A.R.; Hirota, J.A.; et al. Isolation, Sequence, Infectivity, and Replication Kinetics of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.T.; Tseng, J.; Perrone, L.; Worthy, M.; Popov, V.; Peters, C.J. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J. Virol. 2005, 79, 9470–9479. [Google Scholar] [CrossRef] [PubMed]
- Mossel, E.C.; Huang, C.; Narayanan, K.; Makino, S.; Tesh, R.B.; Peters, C.J. Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J. Virol. 2005, 79, 3846–3850. [Google Scholar] [CrossRef] [PubMed]
- Kaye, M. SARS-associated coronavirus replication in cell lines. Emerg. Infect. Dis. 2006, 12, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Gillim-Ross, L.; Taylor, J.; Scholl, D.R.; Ridenour, J.; Masters, P.S.; Wentworth, D.E. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J. Clin. Microbiol. 2004, 42, 3196–3206. [Google Scholar] [CrossRef]
- De Clercq, E.; Stewart, W.E., 2nd; De Somer, P. Studies on the mechanism of the priming effect of interferon on interferon production by cell cultures exposed to poly(rI)-poly(rC). Infect. Immun. 1973, 8, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.; Brown, S.M.; Capriotti, J.A.; Westover, J.B.; Pelletier, J.S.; Tessema, B. In Vitro Efficacy of a Povidone-Iodine Nasal Antiseptic for Rapid Inactivation of SARS-CoV-2. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Reimer, K.; Wichelhaus, T.A.; Schafer, V.; Rudolph, P.; Kramer, A.; Wutzler, P.; Ganzer, D.; Fleischer, W. Antimicrobial effectiveness of povidone-iodine and consequences for new application areas. Dermatology 2002, 204 (Suppl. 1), 114–120. [Google Scholar] [CrossRef] [PubMed]
- Madan, P.D.; Sequeira, P.S.; Shenoy, K.; Shetty, J. The effect of three mouthwashes on radiation-induced oral mucositis in patients with head and neck malignancies: A randomized control trial. J. Cancer Res. 2008, 4, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ader, A.W.; Paul, T.L.; Reinhardt, W.; Safran, M.; Pino, S.; McArthur, W.; Braverman, L.E. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J. Clin. Endocrinol. Metab. 1988, 66, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Kovesi, G. [The use of Betadine antiseptic in the treatment of oral surgical, parodontological and oral mucosal diseases]. Fogorv. Szle. 1999, 92, 243–250. [Google Scholar] [PubMed]
- Domingo, M.A.; Farrales, M.S.; Loya, R.M.; Pura, M.A.; Uy, H. The effect of 1% povidone iodine as a pre-procedural mouthrinse in 20 patients with varying degrees of oral hygiene. J. Philipp. Dent. Assoc. 1996, 48, 31–38. [Google Scholar] [PubMed]
- Foley, T.P., Jr. The relationship between autoimmune thyroid disease and iodine intake: A review. Endokrynol. Pol. 1992, 43 (Suppl. 1), 53–69. [Google Scholar]
- Furudate, S.; Nishimaki, T.; Muto, T. 125I uptake competing with iodine absorption by the thyroid gland following povidone-iodine skin application. Exp. Anim. 1997, 46, 197–202. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gray, P.E.; Katelaris, C.H.; Lipson, D. Recurrent anaphylaxis caused by topical povidone-iodine (Betadine). J. Paediatr Child. Health 2013, 49, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef]
- The Centers for Disease Control and Prevention (CDC). Interim Infection Prevention and Control Guidance for Dental Settings during the COVID-19 Response. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/dental-settings.html (accessed on 28 May 2020).
- Vogt, P.M.; Hauser, J.; Mueller, S.; Bosse, B.; Hopp, M. Efficacy of Conventional and Liposomal Povidone-Iodine in Infected Mesh Skin Grafts: An Exploratory Study. Infect. Dis. Ther. 2017, 6, 545–555. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Thomas, D.; Stanton, R.; Maillard, J.Y.; Murphy, R.C.; Jones, S.A.; Humphreys, I.; Wakelam, M.J.O.; Fegan, C.; Wise, M.P.; et al. Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection. Function 2020, 1, zqaa002. [Google Scholar] [CrossRef] [PubMed]
- Elliot, K.R.; Herbert, M.; Jack, K. Stable Compositions of Uncomplexed Iodine and Methods of Use. U.S. Patent No. 11,297,839, 9 October 2018. [Google Scholar]
- Popkin, D.L.; Zilka, S.; Dimaano, M.; Fujioka, H.; Rackley, C.; Salata, R.; Griffith, A.; Mukherjee, P.K.; Ghannoum, M.A.; Esper, F. Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses in vitro and in vivo. Pathog. Immun. 2017, 2, 252–269. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N.; Deng, Y.; Wang, H.; Ye, F.; Cen, S.; et al. High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors.s of Coronaviruses. J. Virol. 2019, 93, e00023-19. [Google Scholar] [CrossRef]
- Munoz-Basagoiti, J.; Perez-Zsolt, D.; Leon, R.; Blanc, V.; Raich-Regue, D.; Cano-Sarabia, M.; Trinite, B.; Pradenas, E.; Blanco, J.; Gispert, J.; et al. Mouthwashes with CPC Reduce the Infectivity of SARS-CoV-2 Variants In Vitro. J. Dent. Res. 2021, 100, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Elworthy, A.; Greenman, J.; Doherty, F.M.; Newcombe, R.G.; Addy, M. The substantivity of a number of oral hygiene products determined by the duration of effects on salivary bacteria. J. Periodontol. 1996, 67, 572–576. [Google Scholar] [CrossRef]
- Rodríguez-Casanovas, H.J.; la Rosa, M.D.; Bello-Lemus, Y.; Rasperini, G.; Acosta-Hoyos, A.J. Virucidal Activity of Different Mouthwashes Using a Novel Biochemical Assay. Healthcare 2022, 10, 63. [Google Scholar] [CrossRef]
- Huang, Y.H.; Huang, J.T. Use of chlorhexidine to eradicate oropharyngeal SARS-CoV-2 in COVID-19 patients. J. Med. Virol. 2021, 93, 4370–4373. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Bhat, N.; Asawa, K.; Tak, M.; Singh, A.; Shinde, K.; Gandhi, N.; Doshi, A. Effect of Training School Teachers on Oral Hygiene Status of 8-10 Years Old Government School Children of Udaipur City, India. J. Clin. Diagn. Res. JCDR 2016, 10, Zc95–Zc99. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.D.S.; Guedes, M.I.F.; Langa, G.P.J.; Rosing, C.K.; Cavagni, J.; Muniz, F. Virucidal efficacy of chlorhexidine: A systematic review. Odontology 2022, 110, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.J. Safety issues relating to the use of hydrogen peroxide in dentistry. Aust Dent. J. 2000, 45, 257–269. [Google Scholar] [CrossRef]
- Caruso, A.A.; Del Prete, A.; Lazzarino, A.I. Hydrogen peroxide and viral infections: A literature review with research hypothesis definition in relation to the current covid-19 pandemic. Med. Hypotheses. 2020, 144, 109910. [Google Scholar] [CrossRef] [PubMed]
- Zanelli, M.; Ragazzi, M.; De Marco, L. Chemical gastritis and colitis related to hydrogen peroxide mouthwash. Br. J. Clin. Pharmacol. 2017, 83, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Kraus, F.W.; Perry, W.I.; Nickerson, J.F. Salivary catalase and peroxidase values in normal subjects and in persons with periodontal disease. Oral Surg. Oral Med. Oral Pathol. 1958, 11, 95–102. [Google Scholar] [CrossRef]
- Santos, C.; Teodoro, G.; Sibelino, S.; Novaes, P.; Farias, M.; Vilhena, F. Antibiofilm action of PHTALOX®-containing oral care formulations. J. Dent. Res. 2020, 99, 3326. [Google Scholar]
- Drake, D.; Villhauer, A.L. An in vitro comparative study determining bactericidal activity of stabilized chlorine dioxide and other oral rinses. J. Clin. Dent. 2011, 22, 1–5. [Google Scholar] [PubMed]
- Grootveld, M.; Silwood, C.; Gill, D.; Lynch, E. Evidence for the microbicidal activity of a chlorine dioxide-containing oral rinse formulation in vivo. J. Clin. Dent. 2001, 12, 67–70. [Google Scholar]
- Lee, S.S.; Suprono, M.S.; Stephens, J.; Withers, S.A.; Li, Y. Efficacy of stabilized chlorine dioxide-based unflavored mouthwash in reducing oral malodor: An 8-week randomized controlled study. Am. J. Dent. 2018, 31, 309–312. [Google Scholar] [PubMed]
- Ramalingam, S.; Cai, B.; Wong, J.; Twomey, M.; Chen, R.; Fu, R.; Boote, T.; McCaughan, H.; Griffiths, S.; Haas, J. Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci. Rep. 2018, 8, 13630. [Google Scholar] [CrossRef]
- Tateyama-Makino, R.; Abe-Yutori, M.; Iwamoto, T.; Tsutsumi, K.; Tsuji, M.; Morishita, S.; Kurita, K.; Yamamoto, Y.; Nishinaga, E.; Tsukinoki, K. The inhibitory effects of toothpaste and mouthwash ingredients on the interaction between the SARS-CoV-2 spike protein and ACE2, and the protease activity of TMPRSS2 in vitro. PLoS ONE 2021, 16, e0257705. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.S.; Abdelwhab, E.M.; Memish, Z.A. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021, 558, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Ahmed, R.; Chowdhury, R.; Iqbal, S.M.A.; Paulmurugan, R.; Demirci, U.; Asghar, W. Management of COVID-19: Current status and future prospects. Microbes. Infect. 2021, 23, 104832. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Loe, H.; Schiott, C.R. The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J. Periodontal Res. 1970, 5, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Emilson, C.G.; Fornell, J. Effect of toothbrushing with chlorhexidine gel on salivary microflora, oral hygiene, and caries. Scand. J. Dent. Res. 1976, 84, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Maynard, J.H.; Jenkins, S.M.; Moran, J.; Addy, M.; Newcombe, R.G.; Wade, W.G. A 6-month home usage trial of a 1% chlorhexidine toothpaste (II). Effects on the oral microflora. J. Clin. Periodontol. 1993, 20, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Acquired resistance to chlorhexidine-is it time to establish an ‘antiseptic stewardship’ initiative? J. Hosp. Infect. 2016, 94, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species. Antibiotics 2018, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics 2019, 8, 13. [Google Scholar] [CrossRef]
- Russell, A.D. Biocide use and antibiotic resistance: The relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 2003, 3, 794–803. [Google Scholar] [CrossRef]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance Toward Chlorhexidine in Oral Bacteria-Is There Cause for Concern? Front. Microbiol. 2019, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Radford, J.R.; Beighton, D.; Nugent, Z.; Jackson, R.J. Effect of use of 0.05% cetylpyridinium chloride mouthwash on normal oral flora. J. Dent. 1997, 25, 35–40. [Google Scholar] [CrossRef]
- Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J. Infect. 2020, 81, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Iorgulescu, G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J. Med. Life 2009, 2, 303–307. [Google Scholar] [PubMed]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- Geneva, I.I.; Cuzzo, B.; Fazili, T.; Javaid, W. Normal Body Temperature: A Systematic Review. Open Forum Infect. Dis. 2019, 6, ofz032. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
Study | Control | Contact Time | Active Ingredient | Viral Titer (Median) | % Viral Kill | LRV Compared to Control |
---|---|---|---|---|---|---|
Anderson et al., 2020 [15] | 700 μL phosphate-buffered saline (PBS) | 30 s | PVP-I 1.0% | NR | ≥99.99 | ≥4 |
30 s | PVP-I 1.0%, | ≥99.99 | ≥4 | |||
1:2 dilution | ||||||
Bidra et al., 2020 [16] | Water (negative control) Ethanol 70% (positive control) | 15 s | PVP-I 0.5% | <0.67 | NR | ≥4.33 |
15 s | PVP-I 1.25% | <0.67 | ≥4.33 | |||
15 s | PVP-I 1.5% | <0.67 | ≥4.33 | |||
30 s | PVP-I 0.5% | <0.67 | ≥3.63 | |||
30 s | PVP-I 1.25% | <0.67 | ≥3.63 | |||
30 s | PVP-I 1.5% | <0.67 | ≥3.63 | |||
15 s | H2O2 1.5% | ≤3.67 | 1.33 | |||
15 s | H2O2 3% | ≤4.0 | 1.0 | |||
30 s | H2O2 1.5% | ≤3.63 | 1.0 | |||
30 s | H2O2 3% | ≤2.5 | 1.8 | |||
Control | ||||||
15 s | Ethanol | <0.67 | ≥4.33 | |||
30 s | Ethanol | <0.67 | ≥3.63 | |||
15 s | Water | 5.0 | N/A | |||
30 s | Water | 4.3 | N/A | |||
Bidra et al., 2020 [17] | Water (negative control) Ethanol 70% (positive control) | 15 s | PVP-I 0.5% | <0.67 | NR | 3.0 |
15 s | PVP-I 0.75% | <0.67 | 3.0 | |||
15 s | PVP-I 1.5% | <0.67 | 3.0 | |||
30 s | PVP-I 0.5% | <0.67 | 3.33 | |||
30 s | PVP-I 0.75% | <0.67 | 3.33 | |||
30 s | PVP-I 1.5% | <0.67 | 3.33 | |||
Control | ||||||
15 s | Ethanol | 1.5 | 2.17 | |||
30 s | Ethanol | <0.67 | 3.33 | |||
15 s | Water | 3.67 | N/A | |||
30 s | Water | 4.0 | N/A | |||
Davies et al., 2021 [14] | PBS | 60 s 60 s 60 s 60 s 60 s 60 s 60 s | 0.2% CHX (formulation contains ethanol) 0.2% CHX (alcohol-free formulation) 1.4% dipotassium oxalate (alcohol-free formulation) Eucalyptol, thymol, menthol, sodium fluoride, zinc fluoride 0.01–0.02% stabilised hypochlorous acid 1.5% H2O2 0.58% PVP-I (surfactant-free) | NR | NR | 0.5 0.2 ≥3.5 ≥4.1 ≥5.5 0.2 ≥4.1 |
Hassandarvish et al., 2020 [18] | Distilled water | Bovine serum albumin group 15 s 15 s 30 s 30 s 60 s 60 s Bovine serum albumin + Human RBC group 15 s 15 s 30 s 30 s 60 s 60 s | PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% PVP-I 0.5% PVP-I 1.0% | NR | NR | >5 >4 >5 >4 >5 >5 >5 >4 >5 >5 >5 >5 |
Kariwa et al., 2021 [19] | 0.5% sodium thiosulfate | 30 s 30 s 30 s 30 s 30 s 60s 60 s 60 s 60 s 60 s | PVP-I 0.47% PVP-I 0.23% PVP-I 0.23% PVP-I 0.35% PVP-I 0.45% PVP-I 0.47% PVP-I 0.23% PVP-I 0.23% PVP-I 0.35% PVP-I 0.45% | NR | >99.94 >99.93 >99.92 >99.94 >99.99 >99.99 >99.98 >99.97 >99.96 >99.99 | >3.2 >3.1 >3.1 >3.2 >3.8 >4.0 >3.6 >3.6 >3.4 >3.8 |
Koch-Heier et al., 2021 [20] | Infection medium control | NR | 0.05% CPC and 1.5% H2O2 0.1% CHX, 0.05% CPC, and 0.005% F (fluoride), without ethanol 0.05% CPC 0.1% CHX 0.05% CPC and 0.1% CHX 1.5% H2O2 | Virucidal Virucidal Virucidal No effect Virucidal No effect | NR | NR |
Komine et al., 2021 [21] | PBS (Negative control) Ethanol 70% (Positive control) | 20 s 30 s 20 s 30 s 30 s 30 s 30 s 20 s 20 s | 0.5% CPC 0.075% CPC 0.04% CPC 0.12% CHX 0.06% CHX + 0.05% CPC 0.12% CHX + 0.05% CPC 0.20% Delmopinol Hydrochloride Negative control Positive control | 3.13 <3.00 <3.00 7.10 <3.00 <3.00 <2.00 7.35 <2.00 | 99.994 >99.995 >99.996 42.5 >99.995 >99.995 >99.9995 NR >99.9996 | 4.2 >4.3 >4.4 0.2 >4.3 >4.3 >5.3 NR >5.4 |
Meister et al., 2020 [22] | Medium control Strain 1 (UKEssen strain) Strain 2 (BetaCoV/Germany/Ulm/01/2020) Strain 3 (BetaCoV/Germany/Ulm/02/2020) | 30 s 30 s 30 s 30 s 30 s 30 s 30 s 30 s | H2O2 CHX (Chlorhexamed) Dequalinium chloride and benzalkonium chloride CHX (Dynexidine) PVP-I Ethanol and essential oils Octenidine dihydrochloride Polyaminopropyl biguanide (polyhexanide) | NR | NR | Strain 1 2 3 0.78 0.61 0.33 1.00 0.78 1.17 ≥3.11 ≥2.78 ≥2.61 0.50 0.56 0.50 ≥3.11 ≥2.78 ≥2.61 ≥3.11 ≥2.78 ≥2.61 1.11 0.78 0.61 0.61 ≥1.78 1.61 |
Moskowitz and Mendenhall 2020 [23] | Water (Negative control) Ethanol (Positive control) | 15 s 15 s 15 s 15 s 30 s 30 s 30 s 30 s 60s 60 s 60 s 60 s | 1.5% H2O2 0.2% PVP-I 0.12% CHX Formula 100-S molecular iodine (100ppm molecular iodine) 1.5% H2O2 0.2% PVP-I 0.12% CHX Formula 100-S molecular iodine 1.5% H2O2 0.2% PVP-I 0.12% CHX Formula 100-S molecular iodine | NR | NR | <1.0 2.0 <1.0 2.6 <1.0 2.0 <1.0 >3.6 complete inactivation <1.0 3.0 1.0 >3.6 complete inactivation |
Pelletier et al., 2021 [24] | Water | 60 s 60 s 60 s 60 s 60 s | 1.5% PVP-I 0.75% PVP-I 0.5% PVP-I Ethanol 70% Virus control | <0.67 <0.67 <0.67 <0.67 5.3 | NR | 4.63 4.63 4.63 4.63 NA |
Santos et al., 2021 [25] | Viral solution and cellular system (Positive Control) Cellular system only (Negative Control | 30 s 60 s 300 s | 0.1% anionic phthalocyanine derivate (APD) | NR | 90 90 90 | NR |
Shet et al., 2022 [26] | Water (negative control) Ethanol 70% (positive control) | 15 s 15 s 15 s 30 s 30 s 30 s 60 s 60 s 60 s 300 s 300.s 300 s | 0.5% PVP-I Positive control Negative control 0.5% PVP-I Positive control Negative control 0.5% PVP-I Positive control Negative control 0.5% PVP-I Positive control Negative control | 2.5 1.3 5.3 <0.67 <0.67 4.67 1.0 <0.67 4.67 <0.67 <0.67 4.67 | NR | 2.8 4.0 NA >4.0 >4.0 NA 3.67 >4.0 NA >4.0 >4.0 NA |
Shewale et al., 2021 [27] | PBS | 30 s 30 s 60 s 60 s | Stabilized chlorine dioxide Ultra sensitive rinse Sensitive rinse Ultra sensitive rinse Sensitive rinse | NR | 98.4 98.4 96.3 98.0 | NR |
Steinhauer et al., 2021 [28] | Validation control (EN14476 protocol) | 300 s 600 s 300 s 600 s 15 s 30 s 60 s 15 s | 0.1% CHX (80% conc) 0.2% CHX (80% conc) 0.1% Octenidine dihydrochloride (OCT) (80% conc) 0.1% Octenidine dihydrochloride (OCT) (20% conc) | NR | NR | 0.76 0.37 0.81 0.4 ≥4.38 ≥4.38 ≥4.38 ≥4.38 |
Tiong et al., 2021 [29] | Cell culture medium (EN14476:2013/ FprA1:2015 protocol) Clean (0.3 g/L BSA) Dirty (0.3 g/L BSA + 3 mL/L human erythrocytes) | 30 s 30 s 30 s 30 s 30s 60 s 60 s 60 s 60 s 60 s | 0.12% CHX 0.075% CPC and 0.05% SF 0.05% Thymol 0.1% Hexetidine and 9% Ethanol 2% NaCl 0.12% CHX 0.075% CPC and 0.05% SF 0.05% Thymol 0.1% Hexetidine and 9% Ethanol 2% NaCl | NR | NR | Clean Dirty 4.0 4.0 5.0 5.0 0.5 0.5 5.0 5.0 0.0 0.0 4.0 4.0 5.0 5.0 0.75 0.5 5.0 5.0 0.0 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, M.; Suzuki, J.B. The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2. Int. J. Transl. Med. 2022, 2, 387-397. https://doi.org/10.3390/ijtm2030030
Ting M, Suzuki JB. The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2. International Journal of Translational Medicine. 2022; 2(3):387-397. https://doi.org/10.3390/ijtm2030030
Chicago/Turabian StyleTing, Miriam, and Jon B. Suzuki. 2022. "The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2" International Journal of Translational Medicine 2, no. 3: 387-397. https://doi.org/10.3390/ijtm2030030
APA StyleTing, M., & Suzuki, J. B. (2022). The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2. International Journal of Translational Medicine, 2(3), 387-397. https://doi.org/10.3390/ijtm2030030