Older Patients on Hemodiafiltration: Behavior of Uremic Toxins, Inflammation, Endothelium, and Bone Mineral Disorder
Abstract
:1. Introduction
2. Results
3. Discussion
4. Patients and Methods
4.1. Study Design
4.2. Patients
4.3. OL-HDF Treatment
4.4. Laboratory Methods
Biochemical Parameters
4.5. Inflammatory, Endothelial, and Bone Disease Biomarkers
Uremic Toxins
4.6. Statistical Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Vanholder, R.; Van Laecke, S.; Glorieux, G. What is new in uremic toxicity? Pediatr. Nephrol. 2008, 23, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Itoh, Y.; Tateoka, R.; Ezawa, A.; Murakami, K.; Niwa, T. Metabolomic analysis of uremic toxins by liquid chromatography/electrospray ionization-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Bindroo, S.; Quintanilla Rodriguez, B.S.; Challa, H.J. Renal Failure. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Maheshwari, V.; Tao, X.; Thijssen, S.; Kotanko, P. Removal of Protein-Bound Uremic Toxins Using Binding Competitors in Hemodialysis: A Narrative Review. Toxins 2021, 13, 622. [Google Scholar] [CrossRef] [PubMed]
- Madero, M.; Cano, K.B.; Campos, I.; Tao, X.; Maheshwari, V.; Brown, J.; Cornejo, B.; Handelman, G.; Thijssen, S.; Kotanko, P. Removal of Protein-Bound Uremic Toxins during Hemodialysis Using a Binding Competitor. Clin. J. Am. Soc. Nephrol. 2019, 14, 394–402. [Google Scholar] [CrossRef]
- Rocchetti, M.T.; Cosola, C.; Ranieri, E.; Gesualdo, L. Protein-Bound Uremic Toxins and Immunity. Methods Mol. Biol. 2021, 2325, 215–227. [Google Scholar] [CrossRef]
- Fujii, H.; Goto, S.; Fukagawa, M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins 2018, 10, 202. [Google Scholar] [CrossRef]
- Harlacher, E.; Wollenhaupt, J.; Baaten, C.; Noels, H. Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 531. [Google Scholar] [CrossRef]
- Barreto, F.C.; Stinghen, A.E.; de Oliveira, R.B.; Franco, A.T.; Moreno, A.N.; Barreto, D.V.; Pecoits-Filho, R.; Drüeke, T.B.; Massy, Z.A. The quest for a better understanding of chronic kidney disease complications: An update on uremic toxins. J. Bras. Nefrol. 2014, 36, 221–235. [Google Scholar] [CrossRef]
- Meert, N.; Schepers, E.; Glorieux, G.; Van Landschoot, M.; Goeman, J.L.; Waterloos, M.A.; Dhondt, A.; Van der Eycken, J.; Vanholder, R. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: Clinical data and pathophysiological implications. Nephrol. Dial. Transplant. 2012, 27, 2388–2396. [Google Scholar] [CrossRef]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Katsuki, S.; Chen, M.; Decano, J.L.; Halu, A.; Lee, L.H.; Pestana, D.V.S.; Kum, A.S.T.; Kuromoto, R.K.; Golden, W.S.; et al. Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. Circulation 2019, 139, 78–96. [Google Scholar] [CrossRef] [PubMed]
- Mozar, A.; Louvet, L.; Godin, C.; Mentaverri, R.; Brazier, M.; Kamel, S.; Massy, Z.A. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol. Dial. Transplant. 2012, 27, 2176–2181. [Google Scholar] [CrossRef]
- Yamamoto, S.; Fukagawa, M. Uremic Toxicity and Bone in CKD. J. Nephrol. 2017, 30, 623–627. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Bagordo, D.; De Martini, N.; Pasquali, M.; Rotondi, S.; Tartaglione, L.; Stenvinkel, P. Inflammation, Oxidative Stress, and Bone in Chronic Kidney Disease in the Osteoimmunology Era. Calcif. Tissue Int. 2021, 108, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Kamprom, W.; Tawonsawatruk, T.; Mas-Oodi, S.; Anansilp, K.; Rattanasompattikul, M.; Supokawej, A. P-cresol and Indoxyl Sulfate Impair Osteogenic Differentiation by Triggering Mesenchymal Stem Cell Senescence. Int. J. Med. Sci. 2021, 18, 744–755. [Google Scholar] [CrossRef]
- Desjardins, L.; Liabeuf, S.; Oliveira, R.B.; Louvet, L.; Kamel, S.; Lemke, H.D.; Vanholder, R.; Choukroun, G.; Massy, Z.A. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol. Ther. 2014, 10, 463–470. [Google Scholar] [CrossRef]
- Jia, P.; Jin, W.; Teng, J.; Zhang, H.; Zou, J.; Liu, Z.; Shen, B.; Cao, X.; Ding, X. Acute Effects of Hemodiafiltration Versus Conventional Hemodialysis on Endothelial Function and Inflammation: A Randomized Crossover Study. Medicine 2016, 95, e3440. [Google Scholar] [CrossRef]
- Locatelli, F.; Manzoni, C.; Viganò, S.; Cavalli, A.; Di Filippo, S. Hemodiafiltration-state of the art. Contrib. Nephrol. 2011, 168, 5–18. [Google Scholar] [CrossRef]
- Kuo, H.L.; Chou, C.Y.; Liu, Y.L.; Yang, Y.F.; Huang, C.C.; Lin, H.H. Reduction of pro-inflammatory cytokines through hemodiafiltration. Ren. Fail. 2008, 30, 796–800. [Google Scholar] [CrossRef]
- den Hoedt, C.H.; Bots, M.L.; Grooteman, M.P.; van der Weerd, N.C.; Mazairac, A.H.; Penne, E.L.; Levesque, R.; ter Wee, P.M.; Nubé, M.J.; Blankestijn, P.J.; et al. Online hemodiafiltration reduces systemic inflammation compared to low-flux hemodialysis. Kidney Int. 2014, 86, 423–432. [Google Scholar] [CrossRef] [PubMed]
- den Hoedt, C.H.; Mazairac, A.H.A.; van den Dorpel, M.A.; Grooteman, M.P.C.; Blankestijn, P.J. Effect of hemodiafiltration on mortality, inflammation and quality of life. Contrib. Nephrol. 2011, 168, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Panichi, V.; Rizza, G.M.; Paoletti, S.; Bigazzi, R.; Aloisi, M.; Barsotti, G.; Rindi, P.; Donati, G.; Antonelli, A.; Panicucci, E.; et al. Chronic inflammation and mortality in haemodialysis: Effect of different renal replacement therapies. Results from the RISCAVID study. Nephrol. Dial. Transplant. 2008, 23, 2337–2343. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.M.; South Yorkshire Hospitals Research Collaboration; Sharpe, M.D.; Jagger, J.E.; Ellis, C.G.; Solé-Violán, J.; López-Rodríguez, M.; Herrera-Ramos, E.; Ruíz-Hernández, J.; Borderías, L.; et al. 36th International Symposium on Intensive Care and Emergency Medicine. Crit. Care 2016, 20, 94. [Google Scholar] [CrossRef]
- Magnani, S.; Atti, M. Uremic Toxins and Blood Purification: A Review of Current Evidence and Future Perspectives. Toxins 2021, 13, 246. [Google Scholar] [CrossRef]
- Panichi, V.; Rocchetti, M.T.; Scatena, A.; Rosati, A.; Migliori, M.; Pizzarelli, F.; Gesualdo, L. Long term variation of serum levels of uremic toxins in patients treated by post-dilution high volume on-line hemodiafiltration in comparison to standard low-flux bicarbonate dialysis: Results from the REDERT study. J. Nephrol. 2017, 30, 583–591. [Google Scholar] [CrossRef]
- Krieter, D.H.; Hackl, A.; Rodriguez, A.; Chenine, L.; Moragues, H.L.; Lemke, H.D.; Wanner, C.; Canaud, B. Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration. Nephrol. Dial. Transplant. 2010, 25, 212–218. [Google Scholar] [CrossRef]
- Thammathiwat, T.; Tiranathanagul, K.; Limjariyakul, M.; Chariyavilaskul, P.; Takkavatakarn, K.; Susantitaphong, P.; Meesangnin, S.; Wittayalertpanya, S.; Praditpornsilpa, K.; Eiam-Ong, S. Super high-flux hemodialysis provides comparable effectiveness with high-volume postdilution online hemodiafiltration in removing protein-bound and middle-molecule uremic toxins: A prospective cross-over randomized controlled trial. Ther. Apher. Dial. 2021, 25, 73–81. [Google Scholar] [CrossRef]
- Krieter, D.H.; Kerwagen, S.; Rüth, M.; Lemke, H.D.; Wanner, C. Differences in Dialysis Efficacy Have Limited Effects on Protein-Bound Uremic Toxins Plasma Levels over Time. Toxins 2019, 11, 47. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kwak, K.A.; Gil, H.W.; Song, H.Y.; Hong, S.Y. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC Pharmacol. Toxicol. 2013, 14, 60. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Kazama, J.J.; Yamato, H.; Shimoda, H.; Fukagawa, M. Accumulated uremic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone 2013, 57, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Wu, C.C.; Lim, P.S.; Chien, S.W.; Hou, Y.C.; Zheng, C.M.; Shyu, J.F.; Lin, Y.F.; Lu, K.C. Effect of uremic toxin-indoxyl sulfate on the skeletal system. Clin. Chim. Acta 2018, 484, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Nii-Kono, T.; Iwasaki, Y.; Uchida, M.; Fujieda, A.; Hosokawa, A.; Motojima, M.; Yamato, H.; Kurokawa, K.; Fukagawa, M. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007, 71, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Uhlin, F.; Magnusson, P.; Larsson, T.E.; Fernström, A. In the backwater of convective dialysis: Decreased 25-hydroxyvitamin D levels following the switch to online hemodiafiltration. Clin. Nephrol. 2015, 83, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Patrier, L.; Dupuy, A.M.; Granger Vallée, A.; Chalabi, L.; Morena, M.; Canaud, B.; Cristol, J.P. FGF-23 removal is improved by on-line high-efficiency hemodiafiltration compared to conventional high flux hemodialysis. J. Nephrol. 2013, 26, 342–349. [Google Scholar] [CrossRef]
- Lips, L.; de Roij van Zuijdewijn, C.L.M.; Ter Wee, P.M.; Bots, M.L.; Blankestijn, P.J.; van den Dorpel, M.A.; Fouque, D.; de Jongh, R.; Pelletier, S.; Vervloet, M.G.; et al. Serum sclerostin: Relation with mortality and impact of hemodiafiltration. Nephrol. Dial. Transplant. 2017, 32, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, Z.; Gao, Y. Upregulation of nuclear factor-κB activity mediates CYP24 expression and reactive oxygen species production in indoxyl sulfate-induced chronic kidney disease. Nephrology 2016, 21, 774–781. [Google Scholar] [CrossRef]
- Cunha, R.S.D.; Santos, A.F.; Barreto, F.C.; Stinghen, A.E.M. How do Uremic Toxins Affect the Endothelium? Toxins 2020, 12, 412. [Google Scholar] [CrossRef]
- Adijiang, A.; Goto, S.; Uramoto, S.; Nishijima, F.; Niwa, T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol. Dial. Transplant. 2008, 23, 1892–1901. [Google Scholar] [CrossRef]
- Buendía, P.; Montes de Oca, A.; Madueño, J.A.; Merino, A.; Martín-Malo, A.; Aljama, P.; Ramírez, R.; Rodríguez, M.; Carracedo, J. Endothelial microparticles mediate inflammation-induced vascular calcification. Faseb J. 2015, 29, 173–181. [Google Scholar] [CrossRef]
- Lorenzen, J.; Kramer, R.; Kliem, V.; Bode-Boeger, S.M.; Veldink, H.; Haller, H.; Fliser, D.; Kielstein, J.T. Circulating levels of osteopontin are closely related to glomerular filtration rate and cardiovascular risk markers in patients with chronic kidney disease. Eur. J. Clin. Investig. 2010, 40, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Uhlin, F.; Fernström, A.; Knapen, M.H.J.; Vermeer, C.; Magnusson, P. Long-term follow-up of biomarkers of vascular calcification after switch from traditional hemodialysis to online hemodiafiltration. Scand. J. Clin. Lab. Investig. 2019, 79, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Rebic, D.; Rasic, S.; Rebic, V. Influence of endothelin-1 and nitric oxide on left ventricular remodelling in patients on peritoneal dialysis. Ren. Fail. 2014, 36, 232–236. [Google Scholar] [CrossRef]
- Dou, L.; Sallée, M.; Cerini, C.; Poitevin, S.; Gondouin, B.; Jourde-Chiche, N.; Fallague, K.; Brunet, P.; Calaf, R.; Dussol, B.; et al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J. Am. Soc. Nephrol. 2015, 26, 876–887. [Google Scholar] [CrossRef]
- Borges, N.A.; Barros, A.F.; Nakao, L.S.; Dolenga, C.J.; Fouque, D.; Mafra, D. Protein-Bound Uremic Toxins from Gut Microbiota and Inflammatory Markers in Chronic Kidney Disease. J. Ren. Nutr. 2016, 26, 396–400. [Google Scholar] [CrossRef]
- Ağbaş, A.; Canpolat, N.; Çalışkan, S.; Yılmaz, A.; Ekmekçi, H.; Mayes, M.; Aitkenhead, H.; Schaefer, F.; Sever, L.; Shroff, R. Hemodiafiltration is associated with reduced inflammation, oxidative stress and improved endothelial risk profile compared to high-flux hemodialysis in children. PLoS ONE 2018, 13, e0198320. [Google Scholar] [CrossRef] [PubMed]
- Morad, A.A.; Bazaraa, H.M.; Abdel Aziz, R.E.; Abdel Halim, D.A.; Shoman, M.G.; Saleh, M.E. Role of online hemodiafiltration in improvement of inflammatory status in pediatric patients with end-stage renal disease. Iran. J. Kidney Dis. 2014, 8, 481–485. [Google Scholar]
- Panichi, V.; Manca-Rizza, G.; Paoletti, S.; Taccola, D.; Consani, C.; Filippi, C.; Mantuano, E.; Sidoti, A.; Grazi, G.; Antonelli, A.; et al. Effects on inflammatory and nutritional markers of haemodiafiltration with online regeneration of ultrafiltrate (HFR) vs online haemodiafiltration: A cross-over randomized multicentre trial. Nephrol. Dial. Transplant. 2006, 21, 756–762. [Google Scholar] [CrossRef]
- Filiopoulos, V.; Hadjiyannakos, D.; Metaxaki, P.; Sideris, V.; Takouli, L.; Anogiati, A.; Vlassopoulos, D. Inflammation and oxidative stress in patients on hemodiafiltration. Am. J. Nephrol. 2008, 28, 949–957. [Google Scholar] [CrossRef]
- Vaslaki, L.R.; Berta, K.; Major, L.; Weber, V.; Weber, C.; Wojke, R.; Passlick-Deetjen, J.; Falkenhagen, D. On-line hemodiafiltration does not induce inflammatory response in end-stage renal disease patients: Results from a multicenter cross-over study. Artif. Organs 2005, 29, 406–412. [Google Scholar] [CrossRef]
- Carracedo, J.; Merino, A.; Nogueras, S.; Carretero, D.; Berdud, I.; Ramírez, R.; Tetta, C.; Rodríguez, M.; Martín-Malo, A.; Aljama, P. On-line hemodiafiltration reduces the proinflammatory CD14+CD16+ monocyte-derived dendritic cells: A prospective, crossover study. J. Am. Soc. Nephrol. 2006, 17, 2315–2321. [Google Scholar] [CrossRef] [PubMed]
- Krabbe, K.S.; Pedersen, M.; Bruunsgaard, H. Inflammatory mediators in the elderly. Exp. Gerontol. 2004, 39, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Brüünsgaard, H.; Pedersen, B.K. Age-related inflammatory cytokines and disease. Immunol. Allergy Clin. N. Am. 2003, 23, 15–39. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saud. J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef] [PubMed]
Parameter | n = 31 |
---|---|
Age (years) | 77.4 ± 7.1 |
Male gender, n (%) | 20 (64.5) |
Body Mass Index (Kg/m2) | 25.8 ± 5.8 |
Dialysis vintage, days, mean ± SD | 45 ± 20 |
Underlying cause of kidney disease, n (%) | |
Hypertensive Nephrosclerosis | 14 (45.2) |
Diabetes | 11 (35.5) |
Chronic Glomerulonephritis | 1 (3.2) |
Other/unknown | 5 (16.1) |
Drugs administered, n (%) | |
Calcitriol | 6 (19.4) |
Paricalcitol | 3 (9.7) |
Phosphate Binders | 19 (61.3) |
Iron supplementation | 31 (100.0) |
Pre-OL-HDF | Post-OL-HDF | p | |
---|---|---|---|
Indole Acetic Acid (µM) | 7.87 (5.64–11.1) | 8.10 (5.01–10.2) | 0.72 |
Indoxyl sulfate (µM) | 69.9 (36.3–86.0) | 67.9 (52.7–114) | 0.01 |
p-cresil Sulfato (µM) | 187 (131–266) | 183 (128–258) | 1.00 |
Creatinine (mg/dL) | 6.13 ± 2.80 | 7.67 ± 3.01 | <0.01 |
Urea (mg/dL) | 120 (83–148) | 160 (139–185) | <0.01 |
Sodium (mEq/L) | 139 (137–142) | 139 (137–142) | 0.92 |
Potassium (mEq/L) | 4.58 ± 0.81 | 5.41 ± 0.92 | <0.01 |
Albumin (g/dL) | 3.80 (3.70–4.10) | 3.90 (3.70–4.10) | 0.65 |
Glucose (mg/dL) | 138 (119–190) | 121 (108–153) | <0.01 |
Calcium (mg/dL) | 8.40 (8.10–9.00) | 8.80 (8.50–9.50) | 0.01 |
Phosphate (mg/dL) | 4.39 ± 1.41 | 4.81 ± 1.08 | 0.15 |
Alk-p(U/L) | 81 (66–124) | 82 (68–94) | 0.11 |
Intact PTH (pg/mL) | 194 (125–432) | 208 (128–284) | 0.36 |
25(OH)D (ng/mL) | 27 (22–32) | 25 (17–29) | 0.06 |
FGF-23 (pg/mL) | 40 (2–452) | 102 (19–990) | 0.05 |
Sclerostin (ng/mL) | 1.09 (0.64–1.38) | 0.93 (0.54–1.38) | 0.69 |
Osteopontin (ng/mL) | 110 (33–178) | 65 (45–149) | 0.35 |
Endothelin (pg/mL) | 2.5 (2.1–2.8) | 2.8 (2.2–3.3) | 0.42 |
TNF-α (pg/mL) | 2.3 (1.9–2.6) | 2.0 (1.7–2.7) | 0.72 |
Interleukine-6 (pg/mL) | 7.4 (5.5–9.9) | 6.4 (5.5–10.3) | 0.36 |
Interleukine-10 (pg/mL) | 2.6 (0.1–6.6) | 2.3 (1.2–9.7) | 0.37 |
hsCRP (mg/L) | 6.3 (1.9–26.4) | 3.8 (1.7–15.5) | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Jr, A.; Pinto, W.P.; Fanchini, V.C.; de Almeida Silva, L.C.; Gonçalves, T.J.M.; Choque, P.N.B.; Kussi, F.; Nakao, L.S.; Elias, R.M.; Dalboni, M.A. Older Patients on Hemodiafiltration: Behavior of Uremic Toxins, Inflammation, Endothelium, and Bone Mineral Disorder. Int. J. Transl. Med. 2022, 2, 398-407. https://doi.org/10.3390/ijtm2030031
Morales-Jr A, Pinto WP, Fanchini VC, de Almeida Silva LC, Gonçalves TJM, Choque PNB, Kussi F, Nakao LS, Elias RM, Dalboni MA. Older Patients on Hemodiafiltration: Behavior of Uremic Toxins, Inflammation, Endothelium, and Bone Mineral Disorder. International Journal of Translational Medicine. 2022; 2(3):398-407. https://doi.org/10.3390/ijtm2030031
Chicago/Turabian StyleMorales-Jr, Armando, Walter Pereira Pinto, Vanessa Correa Fanchini, Luana Cristina de Almeida Silva, Thiago José Martins Gonçalves, Pamela Nithzi Bricher Choque, Fernanda Kussi, Lia Sumie Nakao, Rosilene Motta Elias, and Maria Aparecida Dalboni. 2022. "Older Patients on Hemodiafiltration: Behavior of Uremic Toxins, Inflammation, Endothelium, and Bone Mineral Disorder" International Journal of Translational Medicine 2, no. 3: 398-407. https://doi.org/10.3390/ijtm2030031
APA StyleMorales-Jr, A., Pinto, W. P., Fanchini, V. C., de Almeida Silva, L. C., Gonçalves, T. J. M., Choque, P. N. B., Kussi, F., Nakao, L. S., Elias, R. M., & Dalboni, M. A. (2022). Older Patients on Hemodiafiltration: Behavior of Uremic Toxins, Inflammation, Endothelium, and Bone Mineral Disorder. International Journal of Translational Medicine, 2(3), 398-407. https://doi.org/10.3390/ijtm2030031