Coexistence of Long-Range Magnetic Order and Magnetic Frustration of a Novel Two-Dimensional S = 1/2 Structure: Na2Cu3(SeO3)4
Abstract
:1. Introduction
2. Experimental Section
2.1. Hydrothermal Synthesis of Na2Cu3(SeO3)4
2.2. Single-Crystal X-ray Diffraction
2.3. Magnetic Property Characterization
3. Results and Discussion
3.1. Synthesis and Crystal Structure of Na2Cu3(SeO3)4
3.2. Magnetic Properties of Na2Cu3(SeO3)4
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tokura, Y.; Kawasaki, M.; Nagaosa, N. Emergent Functions of Quantum Materials. Nat. Phys. 2017, 13, 1056–1068. [Google Scholar] [CrossRef]
- Keimer, B.; Moore, J. The Physics of Quantum Materials. Nat. Phys. 2017, 13, 1045–1055. [Google Scholar] [CrossRef]
- Giustino, F.; Lee, J.H.; Trier, F.; Bibes, M.; Winter, S.M.; Valentí, R.; Son, Y.; Taillefer, L.; Heil, C.; Figueroa, A.I.; et al. The 2021 Quantum Materials Roadmap. J. Phys. Mater. 2020, 3, 042006. [Google Scholar] [CrossRef]
- Balents, L. Spin Liquids in Frustrated Magnets. Nature 2010, 464, 199–208. [Google Scholar] [CrossRef]
- Head-Marsden, K.; Flick, J.; Ciccarino, C.J.; Narang, P. Quantum Information and Algorithms for Correlated Quantum. Chem. Rev. 2021, 121, 3061–3120. [Google Scholar] [CrossRef]
- Ni, X.; Yves, S.; Krasnok, A.; Alu, A. Topological Metamaterials. Chem. Rev. 2023, 123, 7585–7654. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X. High Pressure: A Feasible Tool for the Synthesis of Unprecedented Inorganic Compounds. Inorg. Chem. Front. 2020, 7, 2890–2898. [Google Scholar] [CrossRef]
- Walsh, J.P.S.; Freedman, D.E. High-Pressure Synthesis: A New Frontier in the Search for Next-Generation Intermetallic Compounds. Acc. Chem. Res. 2018, 51, 1315–1323. [Google Scholar] [CrossRef]
- Xiao, G.; Geng, T.; Zou, B. Emerging Functional Materials under High Pressure toward Enhanced Properties. ACS Mater. Lett. 2020, 2, 1233–1239. [Google Scholar] [CrossRef]
- Knolle, J.; Moessner, R. A Field Guide to Spin Liquids. Annu. Rev. Condens. Matter Phys. 2019, 10, 451–472. [Google Scholar] [CrossRef]
- Wen, J.; Yu, S.; Li, S.; Yu, W.; Li, J. Experimental Identification of Quantum Spin Liquids. NPJ Quantum Mater. 2019, 4, 12. [Google Scholar] [CrossRef]
- Taddei, K.M.; Garlea, V.O.; Samarakoon, A.M.; Sanjeewa, L.D.; Xing, J.; Heitmann, T.W.; Cruz, C.; Sefat, A.S.; Parker, D. Zig-Zag Magnetic Order and Potential Kitaev Interactions in the Spin-1 Honeycomb Lattice KNiAsO4. Phys. Rev. Res. 2023, 5, 013022. [Google Scholar] [CrossRef]
- Xing, J.; Sanjeewa, L.D.; May, A.F.; Sefat, S.A. Synthesis and Anisotropic Magnetism in Quantum Spin Liquid Candidates AYbSe2 (A = K and Rb). APL Mater. 2021, 9, 111104. [Google Scholar] [CrossRef]
- Xie, T.; Eberharter, A.A.; Xing, J.; Nishimoto, S.; Brando, M.; Khanenko, P.; Sichelschmidt, J.; Turrini, A.A.; Mazzone, D.G.; Naumov, P.G.; et al. Complete field-induced spectral response of the spin-1/2 triangular-lattice antiferromagnet CsYbSe2. NPJ Quantum Mater. 2023, 8, 48. [Google Scholar] [CrossRef]
- McMillen, C.D.; Kolis, J.W. Hydrothermal Synthesis as a Route to Mineralogically-inspired Structures. Dalton Trans. 2016, 45, 2772–2784. [Google Scholar] [CrossRef]
- Sanjeewa, L.D.; Garlea, V.O.; Fishman, R.S.; Foroughian, M.; Yin, L.; Xing, J.; Parker, D.S.; Pellizzeri, T.M.S.; Sefat, A.S.; Kolis, J.W. Field Tunable Magnetic Transitions of CsCo2(MoO4)2(OH): A Triangular Chain Structure with a Frustrated Geometry. Mater. Chem. Front. 2023, 7, 1058–1071. [Google Scholar] [CrossRef]
- Sanjeewa, L.D.; Garlea, V.O.; McGuire, M.A.; Xing, J.; Cao, H.; Kolis, J.W.; Sefat, A.S. Observation of Large Magnetic Anisotropy and Field-induced Magnetic State in SrCo(VO4)(OH): A Structure with Quasi One-Dimensional Magnetic Chain. Inorg. Chem. 2020, 59, 1029–1037. [Google Scholar] [CrossRef]
- Sanjeewa, L.D.; Ross, K.A.; Sarkis, C.L.; Nair, H.S.; McMillen, C.D.; Kolis, J.W. Single Crystals of Cubic Rare-Earth Pyrochlore Germanates: RE2Ge2O7 (RE = Yb and Lu) Grown by a High-Temperature Hydrothermal Technique. Inorg. Chem. 2018, 57, 12456–12460. [Google Scholar] [CrossRef] [PubMed]
- Matthew, P.; Sanjeewa, L.D.; McMillen, C.D.; Ross, K.A.; Sarkis, C.L.; Kolis, J.W. Hydrothermal Crystal Growth of Rare Earth Tin Cubic Pyrochlores, RE2Sn2O7 (RE = La-Lu): Site Ordered, Low Defect Single Crystals. Cryst. Growth Des. 2019, 19, 4920–4926. [Google Scholar]
- Krivovichev, S.V. Which Inorganic Structures are the Most Complex? Angew. Chem. Int. Ed. 2014, 53, 654–661. [Google Scholar] [CrossRef]
- Bugaris, D.E.; zur Loye, H.-C. Materials Discovery by Flux Crystal Growth: Quaternary and Higher Order Oxides. Angew. Chem. Int. Ed. 2012, 51, 3780–3811. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sanjeewa, L.D.; Garlea, V.O.; Pellizzeri, T.M.S.; Kolis, J.W.; Sefat, A.S. Complex Magnetic Order in the Decorated Spin-chain System Rb2Mn3(MoO4)3(OH)2. Phys. Rev. B 2020, 101, 064423. [Google Scholar] [CrossRef]
- Garlea, V.O.; Sanjeewa, L.D.; McGuire, M.A.; Batista, C.D.; Samarakoon, A.M.; Graf, D.; Winn, B.; Ye, F.; Hoffmann, C.; Kolis, J.W. Exotic Magnetic Field-Induced Spin-Superstructures in a Mixed Honeycomb-Triangular Lattice System. Phys. Rev. X 2019, 9, 011038. [Google Scholar] [CrossRef]
- Sanjeewa, L.D.; McGuire, M.A.; McMillen, C.D.; Garlea, V.O.; Kolis, J.W. Polar Materials with Isolated V4+ S = ½ Triangles: NaSr2V3O3(Ge4O13)Cl and KSr2V3O3(Ge4O13)Cl. Chem. Mater. 2017, 29, 1404–1412. [Google Scholar] [CrossRef]
- Garlea, O.; Sanjeewa, L.D.; McGuire, M.; Kumar, P.; Sulejmanovic, D.; He, J.; Hwu, S.-J. Complex Magnetic Behavior of the Sawtooth Fe Chains in Rb2Fe2O(AsO4)2. Phys. Rev. B 2014, 89, 014426. [Google Scholar] [CrossRef]
- Sanjeewa, L.D.; Garlea, V.O.; Taddei, K.M.; Yin, L.; Xing, J.; Fishman, R.S.; Parker, D.S.; Sefat, S.A. NaCo2(SeO3)2(OH): Competing Magnetic Ground States of a New Sawtooth Structure with 3d7 Co2+ ions. Inorg. Chem. Front. 2022, 9, 4329–4340. [Google Scholar] [CrossRef]
- Taddei, K.M.; Sanjeewa, L.D.; Xing, J.; Parker, D.; Podleznyak, A.; dela Cruz, C.; Sefat, A. Tunable Magnetic Order in Low-Symmetry SeO3 Ligand Linked TM3(SeO3) 3H2O (TM = Mn, Co and Ni) Compounds. Phys. Rev. M 2020, 4, 024410. [Google Scholar] [CrossRef]
- Menezes, L.T.; Gage, E.; Assoud, A.; Liang, M.; Halasyamani, P.S.; Kleinke, H. Sr6Ge3OSe11: A Rationally Designed Noncentrosymmetric Oxyselenide with Polar [GeOSe3] Building Blocks. Chem. Mater. 2023, 35, 3033–3040. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, B.; Halasyamani, P.S.; Zhang, W. Pb2TiFO(SeO3)2Br: A New Polar Compound with the Strongest Second Harmonic Generation in the Selenite Bromide Family. J. Mater. Chem. C 2021, 9, 6491–6497. [Google Scholar] [CrossRef]
- Kovrugin, V.M.; Colmont, M.; Siidra, O.I.; Charkin, D.O.; Aliev, A.; Krivovichev, S.V.; Mentré, O. Synthesis and Structural Variety of First Mn and Bi Selenites and Selenite Chlorides. Cryst. Mater. 2019, 234, 141–153. [Google Scholar] [CrossRef]
- Berdonosov, P.S.; Kuznetsova, E.S.; Dolgikh, V.A. Transition Metal Selenite Halides: A Fascinating Family of Magnetic Compounds. Crystals 2018, 8, 159. [Google Scholar] [CrossRef]
- Choudhury, A.; Kumar, U.; Rao, C.N.R. Three-dimensional Organically Templated Open-Framework Transition Metal Selenites. Angew. Chem. Int. Ed. 2002, 41, 158–161. [Google Scholar] [CrossRef]
- Qian, F.; Bannenberg, L.J.; Wilhelm, H.; Chaboussant, G.; Debeer-Schmitt, L.M.; Schmidt, M.P.; Aqee, A.; Palstra, T.T.M.; Brück, E.; Lefering, A.J.E.; et al. New Magnetic Phase of the Chiral Skyrmion Material Cu2OSeO3. Sci. Adv. 2018, 4, 7323. [Google Scholar]
- Zhong, R.; Guo, S.; Ni, D.; Cava, R.J. Dicobalt (II) Hydroxo-selenite: Hydrothermal Synthesis, Crystal Structure and Magnetic Properties of Co2SeO3(OH)2. J. Solid State Chem. 2020, 285, 121250. [Google Scholar] [CrossRef]
- Liu, X.C.; Ouyang, C.W.; Xiao, T.T.; Cao, J.J.; Wang, J.X.; Xia, Z.C.; He, Z.Z.; Tong, W. Magnetism and ESR of the Seff = 1/2 Antiferromagnet BaCo2(SeO3)3 3H2O with Dimer-Chain Structure. Phys. Rev. B 2022, 105, 134417. [Google Scholar] [CrossRef]
- Zhong, R.; Guo, S.; Cava, R.J. Frustrated magnetism in the layered triangular lattice materials K2Co(SeO3)2 and Rb2Co(SeO3)2. Phys. Rev. B 2020, 4, 084406. [Google Scholar] [CrossRef]
- Li, Z.; Ouyang, Z.; Cao, J.; Liu, X.; Xiao, T.; Wang, L.; Liang, Y.; Tian, Z.; Wang, Z.; Xia, Z. K2Ni(SeO3)2: A Perfect S = 1 Triangular-Lattice Antiferromagnet with Strong Geometric Frustration and Easy-Plane Anisotropy. Cryst. Growth Des. 2023, 23, 5137–5143. [Google Scholar] [CrossRef]
- Zhong, R.; Guo, S.; Nguyen, L.T.; Cava, R.J. Frustrated spin-1/2 Dimer Compound K2Co2(SeO3)3 with Easy-axis Anisotropy. Phys. Rev. B 2020, 102, 224430. [Google Scholar] [CrossRef]
- Apex3; Bruker AXS Inc.: Madison, WI, USA, 2015.
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Asai, T.; Kiriyama, R. Optical and Magnetic Studies of CuSeO3 2H2O Based on the Refined Crystal Structure. Bull. Chem. Soc. Jpn. 1973, 46, 2395–2401. [Google Scholar] [CrossRef]
- Shanno, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Amuneke, N.G.; Gheorghe, D.E.; Lorenz, B.; Möller, A. Synthesis, Crystal Structure, and Physical Properties of BaAg2Cu[VO4]2: A New Member of the S = 1/2 Triangular Lattice. Inorg. Chem. 2011, 50, 2207–2214. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, W.; Yang, M.; Tang, Y.; Cui, Y.; Wang, N.; He, Z. A frustrated Ferrimagnet Cu5(VO4)2(OH)4 with a 1/5 Magnetization Plateau on a New Spin-lattice of Alternating Triangular and Honeycomb Strips. Dalton Trans. 2015, 44, 20562–20567. [Google Scholar] [CrossRef]
- Kakarla, D.C.; Yang, Z.H.; Wu, H.C.; Kuo, T.W.; Tiwari, A.; Li, W.-H.; Lee, C.H.; Wang, Y.-Y.; Lin, J.-Y.; Chang, C.K.; et al. Single Crystal Growth and Structural, Magnetic, and Magnetoelectric Properties in Spin-Frustrated bow-tie Lattice of α-Cu5O2(SeO3)2Cl2. Mater. Adv. 2021, 2, 7939–7948. [Google Scholar] [CrossRef]
- He, Z.; Lin, C.; Cheng, W.; Okazawa, A.; Kojima, N.; Yamaura, J.; Ueda, Y. Unusually Large Magnetic Anisotropy in a CuO-Based Semiconductor Cu5V2O10. J. Am. Chem. Soc. 2011, 133, 1298–1300. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, S.; Guo, W.; Tanga, Y.; He, Z. Spin-frustration in a New Spin-1/2 Oxyfluoride System (Cu13(VO4)4(OH)10F4) Constructed by Alternatively Distorted Kagome-like and Triangular Lattices. Dalton Trans. 2015, 44, 15396–15399. [Google Scholar] [CrossRef]
- Ramirez, A.P. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 1994, 24, 453–480. [Google Scholar] [CrossRef]
- Mustonen, O.; Vasala, S.; Mutch, H.; Thomas, C.I.; Stenning, G.B.G.; Baggio-Saitovitch, E.; Cussen, E.J.; Karppinen, M. Magnetic Interactions in the S = 1/2 Square-lattice Antiferromagnets Ba2CuTeO6 and Ba2CuWO6: Parent Phases of a Possible Spin Liquid. Chem. Commun. 2019, 55, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Tian, W.; Zhou, J.; Lynch, V.M.; Steinfink, H.; Manthiram, A.; May, A.F.; Garlea, V.A.; Neuefeind, G.C.; Yan, J. Crystal and Magnetic Structures and Physical Properties of a New Pyroxene NaMnGe2O6 Synthesized under High Pressure. J. Am. Chem. Soc. 2013, 135, 2776–2786. [Google Scholar] [CrossRef] [PubMed]
- Vasiliev, A.N.; Ignatchik, O.L.; Sokolov, A.N.; Hiroi, Z.; Isobe, M.; Ueda, Y. Long-range Magnetic Order in Quasi-one-dimensional Chromium-based (S = 3/2) pyroxene (Li,Na)Cr(Si,Ge)2O6. Phys. Rev. B 2005, 72, 012412. [Google Scholar] [CrossRef]
Empirical Formula | Na2Cu3(SeO3)4 |
---|---|
formula weight (g/mol) | 744.44 |
crystal system | monoclinic |
crystal dimensions, mm | 0.02 × 0.02 × 0.02 |
space group, Z | P21/n (no.14), 2 |
T, K | 298 |
a, Å | 8.1704(4) |
b, Å | 5.1659(2) |
c, Å | 14.7406(6) |
β, ° | 100.86(2) |
volume, Å3 | 611.01(5) |
D(calc), g/cm3) | 4.046 |
µ (Mo Kα), mm−1 | 17.218 |
F(000) | 682 |
Tmax, Tmin | 1.0000, 0.6887 |
2θ range | 2.66-30.48 |
reflections collected | 25336 |
data/restraints/parameters | 1866/0/97 |
final R [I > 2σ(I)] R1, Rw2 | 0.0216, 0.0525 |
final R (all data) R1, Rw2 | 0.0295, 0.0525 |
GoF | 1.023 |
largest diff. peak/hole, e/Å3 | 1.216/−0.939 |
Cu(1)O6 | Cu(2)O5 | ||
Cu(1)-O(1) × 2 | 1.956(2) | Cu(2)-O(1) | 2.002(2) |
Cu(1)-O(2) × 2 | 1.971(2) | Cu(2)-O(3) | 1.963(2) |
Cu(1)-O(3) × 2 | 2.436(2) | Cu(2)-O(4) | 1.994(2) |
Cu(2)-O(4) | 2.392(2) | ||
Cu(2)-O(5) | 1.924(2) | ||
Se(1)O3 | Se(2)O3 | ||
Se(1)-O(2) | 1.682(2) | Se(2)-O(1) | 1.642(2) |
Se(1)-O(4) | 1.722(2) | Se(2)-O(3) | 1.726(2) |
Se(1)-O(5) | 1.686(2) | Se(2)-O(6) | 1.760(2) |
Cu(1)-O(1)-Cu(2) | 137.3(2) | Cu(1)ꞏꞏꞏCu(2) | 3.476(2) |
Cu(1)-O(3)-Cu(2) | 103.9(1) | Cu(1)ꞏꞏꞏCu(2) | 3.686(2) |
Cu(2)-O(4)-Cu(2) | 120.7(3) | Cu(2)ꞏꞏꞏCu(2) | 3.816(2) |
Atom | Wyckoff | x | y | z | Ueq |
---|---|---|---|---|---|
Na(1) | 4e | 0.9306(2) | 0.5284(5) | 0.2397(3) | 0.01690(3) |
Cu(1) | 2c | 0.5000 | 0 | 0.5000 | 0.01027(5) |
Cu(2) | 4e | 0.3191(2) | 0.5281(1) | 0.3447(3) | 0.00971(3) |
Se(1) | 4e | 0.1053(5) | 0.0115(3) | 0.3856(3) | 0.01148(4) |
Se(2) | 4e | 0.6623(6) | 0.4853(2) | 0.4101(3) | 0.01176(6) |
O(1) | 4e | 0.4902(3) | 0.2805(2) | 0.4100(3) | 0.01192(2) |
O(2) | 4e | 0.2555(7) | −0.0353(4) | 0.4790(5) | 0.02284(5) |
O(3) | 4e | 0.5260(6) | 0.7310(5) | 0.3677(5) | 0.01101(3) |
O(4) | 4e | 0.1762(1) | −0.1664(2) | 0.3019(2) | 0.01294(3) |
O(5) | 4e | 0.1268(2) | 0.3197(2) | 0.3518(3) | 0.01166(3) |
O(6) | 4e | 0.7326(5) | 0.3840(5) | 0.3190(5) | 0.02812(4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, E.D.; Taddei, K.M.; Ranmohotti, K.G.S.; Narayanan, N.; Heitmann, T.; Kolis, J.W.; Sanjeewa, L.D. Coexistence of Long-Range Magnetic Order and Magnetic Frustration of a Novel Two-Dimensional S = 1/2 Structure: Na2Cu3(SeO3)4. Magnetism 2024, 4, 35-46. https://doi.org/10.3390/magnetism4010003
Williams ED, Taddei KM, Ranmohotti KGS, Narayanan N, Heitmann T, Kolis JW, Sanjeewa LD. Coexistence of Long-Range Magnetic Order and Magnetic Frustration of a Novel Two-Dimensional S = 1/2 Structure: Na2Cu3(SeO3)4. Magnetism. 2024; 4(1):35-46. https://doi.org/10.3390/magnetism4010003
Chicago/Turabian StyleWilliams, Emily D., Keith M. Taddei, Kulugammana G. S. Ranmohotti, Narendirakumar Narayanan, Thomas Heitmann, Joseph W. Kolis, and Liurukara D. Sanjeewa. 2024. "Coexistence of Long-Range Magnetic Order and Magnetic Frustration of a Novel Two-Dimensional S = 1/2 Structure: Na2Cu3(SeO3)4" Magnetism 4, no. 1: 35-46. https://doi.org/10.3390/magnetism4010003
APA StyleWilliams, E. D., Taddei, K. M., Ranmohotti, K. G. S., Narayanan, N., Heitmann, T., Kolis, J. W., & Sanjeewa, L. D. (2024). Coexistence of Long-Range Magnetic Order and Magnetic Frustration of a Novel Two-Dimensional S = 1/2 Structure: Na2Cu3(SeO3)4. Magnetism, 4(1), 35-46. https://doi.org/10.3390/magnetism4010003