Documenting Clinical Outcomes Assessed in Outpatients with COVID-19: A Scoping Review of Randomized Controlled Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Data Synthesis and Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Outcome Grouping and Classification
3.2.1. Symptom Severity and Duration
- Symptom Severity: Measured using various scales to quantify the intensity of symptoms such as fever, cough, and fatigue.
- Change in Symptom Severity Scale: Assessed by tracking improvements or worsening in symptom scores over time.
- Symptom Duration: The length of time patients experienced symptoms, highlighting the persistence of illness.
- Symptom Resolution: Defined as the complete disappearance of symptoms, indicating recovery.
- Symptom Presence: Simply noting whether specific symptoms were present or absent during the study period.
- Time to Initial Reduction of Symptom Severity: The time it took from the start of the intervention for patients to experience a noticeable decrease in symptom severity.
- Time to Symptom Resolution: The duration it took for symptoms to disappear completely, indicating recovery.
- Fever-Free Days: The number of days patients were free from fever.
- Dyspnea: Instances of difficulty in breathing were reported during the study.
3.2.2. Disease Progression
- Change in Ordinal Disease Severity Scale: A measure of changes in disease severity, often using scales that classify the disease into stages such as mild, moderate, or severe.
- Worst Ordinal Disease Severity Scale: The highest level of disease severity recorded during the study.
- Symptom Progression: Tracking the worsening of symptoms over time, indicating a decline in patient condition.
- Time to Improvement in Ordinal Disease Severity Scale: The duration it took for patients to show improvement on severity scales, moving from higher to lower severity categories.
- Time to Symptom Progression: The time it took for symptoms to worsen.
- Development of Severe Disease: Instances where patients progressed from a mild or moderate state to severe disease requiring intensive interventions.
- Development of New Severe Symptoms: The onset of severe symptoms that were not present at the start of the study.
- Development of New Symptoms: The onset of any new symptoms that were not present at the start of the study.
- Time to Development of Severe Disease: The time it took for patients to progress to severe disease.
- Prolonged Symptom: Symptoms that persist for an extended period.
- Multiple Organ Dysfunction Syndrome: The occurrence of multiple organ failure.
- Shock: Instances of shock reported during the study.
3.2.3. Hospitalization and Healthcare Utilization
- Hospitalization: Whether patients require admission to a hospital due to worsening symptoms or complications.
- Time to Hospitalization: The time it took for patients to be admitted to a hospital.
- Length of Stay at Hospital: The duration of hospital stays.
- Hospital-Free Days: The number of days patients did not require hospitalization.
- Intensive Care Unit-Free Days: The number of days patients did not require admission to an intensive care unit.
- Seeking Emergency or Urgent Care: Instances where patients sought emergency or urgent medical care due to exacerbation of symptoms.
- Time to Seeking Emergency or Urgent Care: The time it took for patients to seek emergency or urgent care.
- Requirement of Oxygen Supplementation: The need for additional oxygen support indicates respiratory distress.
- Duration of Oxygen Supplementation: The length of time patients required oxygen support.
- Oxygen-Free Days: The number of days patients did not require oxygen supplementation.
- Requirement of Ventilation: Mechanical ventilation is needed due to severe respiratory distress.
- Requirement of Rescue Therapy: Instances where patients needed additional therapy due to lack of response to standard treatment.
- Duration of Ventilation: The length of time patients required mechanical ventilation.
- Ventilator-Free Days: The number of days patients did not require mechanical ventilation.
- Admission to Intensive Care Unit: The need for intensive care support due to severe illness.
- Time to an Emergency Visit Lasting More Than 6 Hours: The time it took for patients to have an emergency visit lasting more than 6 h.
- Respiratory Failure: Instances of respiratory system failure requiring critical intervention.
- Vasopressor-Free Days: The number of days patients did not require vasopressor support.
- Days with Ventilation: The total number of days patients were on mechanical ventilation.
3.2.4. Mortality
- Death: Any instance of death reported during the study period, providing critical data on the lethality of the disease and the effectiveness of interventions in preventing fatalities.
- Time to Death: The time it took from the start of the study or intervention to death.
3.2.5. Quality of Life and Functional Status
- Quality of Life: Assessed using standardized questionnaires to evaluate the overall physical, mental, and social health of patients.
- Functional Limitation: Measuring the extent to which COVID-19 affected patients’ ability to carry out everyday activities and maintain independence.
- Time to Return to Usual Health: It took patients to return to their pre-illness state of health.
- Amount of Time Spent Feeling Unwell: The duration patients felt unwell during the study.
- Self-Reported Cure: Instances where patients reported feeling completely cured of their symptoms.
- Patient Satisfaction: Assessing patients’ satisfaction with the treatment received.
3.2.6. Other Clinical Events
3.3. Classification with COMET Taxonomy
3.4. Symptom Severity and Duration
3.5. Disease Progression
3.6. Hospitalization and Healthcare Utilization
3.7. Mortality
3.8. Quality of Life and Functional Status
3.9. Other Clinical Events
| Original Classification | COMET Core Area | Domain | Outcomes |
|---|---|---|---|
| Symptom Severity and Duration | Physiological/Clinical | General outcomes | Symptom Severity, Change in Symptom Severity Scale, Symptom Duration, Symptom Resolution, Symptom Presence, Time to Initial Reduction of Symptom Severity, Time to Symptom Resolution, Fever-Free Days |
| Respiratory, thoracic, and mediastinal outcomes | Dyspnea | ||
| Disease Progression | Physiological/Clinical | General outcomes | Change in Ordinal Disease Severity Scale, Worst Ordinal Disease Severity Scale, Symptom Progression, Time to Improvement in Ordinal Disease Severity Scale, Time to Symptom Progression, Development of Severe Disease, Development of New Severe Symptoms, Development of New Symptoms, Time to Development of Severe Disease, Prolonged Symptom, Multiple Organ Dysfunction Syndrome, Shock |
| Hospitalization and Healthcare Utilization | Resource Use | Resource utilization | Hospitalization, Time to Hospitalization, Length of Stay at Hospital, Hospital-Free Days, Intensive Care Unit-Free Days, Seeking Emergency or Urgent Care, Time to Seeking Emergency or Urgent Care, Requirement of Oxygen Supplementation, Duration of Oxygen Supplementation, Oxygen-Free Days, Requirement of Ventilation, Requirement of Rescue Therapy, Duration of Ventilation, Ventilator-Free Days, Admission to Intensive Care Unit, Time to an Emergency Visit Lasting More Than 6 Hours, Respiratory Failure, Vasopressor-Free Days, Days with Ventilation |
| Mortality | Death | Mortality/survival | Death, Time to Death |
| Quality of Life and Functional Status | Life Impact | Global quality of life | Quality of Life |
| Physical functioning | Functional Limitation | ||
| Perceived health status | Time to Return to Usual Health, Amount of Time Spent Feeling Unwell, Self-Reported Cure | ||
| Delivery of care | Patient’s Satisfaction | ||
| Other Clinical Events | Physiological/Clinical | Cardiac outcomes | Development of Cardiovascular Events |
| Infection and infestation outcomes | Immediate Contacts Diagnosed with or Suspected to Have COVID-19 | ||
| General outcomes | Post-COVID-19 Syndrome |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duek, I.; Fliss, D.M. The COVID-19 pandemic-from great challenge to unique opportunity: Perspective. Ann. Med. Surg. 2020, 59, 68–71. [Google Scholar] [CrossRef]
- Dhala, A.; Gotur, D.; Hsu, S.H.; Uppalapati, A.; Hernandez, M.; Alegria, J.; Masud, F. A Year of Critical Care: The Changing Face of the ICU During COVID-19. Methodist DeBakey Cardiovasc. J. 2021, 17, 31–42. [Google Scholar] [CrossRef]
- Aziz, S.; Arabi, Y.M.; Alhazzani, W.; Evans, L.; Citerio, G.; Fischkoff, K.; Salluh, J.; Meyfroidt, G.; Alshamsi, F.; Oczkowski, S.; et al. Managing ICU surge during the COVID-19 crisis: Rapid guidelines. Intensive Care Med. 2020, 46, 1303–1325. [Google Scholar] [CrossRef]
- Baptista, A.; Vieira, A.M.; Capela, E.; Julião, P.; Macedo, A. COVID-19 fatality rates in hospitalized patients: A new systematic review and meta-analysis. J. Infect. Public Health 2023, 16, 1606–1612. [Google Scholar] [CrossRef]
- Marcilio, I.; Lazar Neto, F.; Lazzeri Cortez, A.; Miethke-Morais, A.; Dutilh Novaes, H.M.; Possolo de Sousa, H.; de Carvalho, C.R.R.; Shafferman Levin, A.S.; Ferreira, J.C.; Gouveia, N.; et al. Mortality over time among COVID-19 patients hospitalized during the first surge of the pandemic: A large cohort study. PLoS ONE 2022, 17, e0275212. [Google Scholar] [CrossRef]
- Glasziou, P.; Sanders, S.; Byambasuren, O.; Thomas, R.; Hoffmann, T.; Greenwood, H.; van der Merwe, M.; Clark, J. Clinical trials and their impact on policy during COVID-19: A review. Wellcome Open Res. 2024, 9, 20. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Belizna, C.; Selva-O’Callaghan, A.; Pardos-Gea, J.; Quintana, A.; Mekinian, A.; Anunciacion-Llunell, A.; Miró-Mur, F. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun. Rev. 2020, 19, 102569. [Google Scholar] [CrossRef]
- Lapostolle, F.; Schneider, E.; Vianu, I.; Dollet, G.; Roche, B.; Berdah, J.; Michel, J.; Goix, L.; Chanzy, E.; Petrovic, T.; et al. Clinical features of 1487 COVID-19 patients with outpatient management in the Greater Paris: The COVID-call study. Intern. Emerg. Med. 2020, 15, 813–817. [Google Scholar] [CrossRef]
- Halalau, A.; Odish, F.; Imam, Z.; Sharrak, A.; Brickner, E.; Lee, P.B.; Foglesong, A.; Michel, A.; Gill, I.; Qu, L.; et al. Epidemiology, Clinical Characteristics, and Outcomes of a Large Cohort of COVID-19 Outpatients in Michigan. Int. J. Gen. Med. 2021, 14, 1555–1563. [Google Scholar] [CrossRef]
- Isasi, F.; Naylor, M.D.; Skorton, D.; Grabowski, D.C.; Hernández, S.; Rice, V.M. Patients, Families, and Communities COVID-19 Impact Assessment: Lessons Learned and Compelling Needs. In NAM Perspectives; National Academy of Medicine: Washington, DC, USA, 2021; Volume 2021. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146, Erratum in Nat. Rev. Microbiol. 2023, 21, 408. [Google Scholar] [CrossRef]
- Rahmani, K.; Shavaleh, R.; Forouhi, M.; Disfani, H.F.; Kamandi, M.; Oskooi, R.K.; Foogerdi, M.; Soltani, M.; Rahchamani, M.; Mohaddespour, M.; et al. The effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19: A systematic review and meta-analysis. Front. Public Health 2022, 10, 873596. [Google Scholar] [CrossRef]
- Fatima, S.; Zafar, A.; Afzal, H.; Ejaz, T.; Shamim, S.; Saleemi, S.; Subhan Butt, A. COVID-19 infection among vaccinated and unvaccinated: Does it make any difference? PLoS ONE 2022, 17, e0270485. [Google Scholar] [CrossRef]
- Finazzi, S.; Perego, M.; Tricella, G.; Poole, D.; Ranieri, V.M.; GiViTI (Italian Group for the Evaluation of Interventions in Intensive Care Medicine). SARS-CoV-2 breakthrough infections in vaccinated individuals requiring ventilatory support for severe acute respiratory failure. Intensive Care Med. 2023, 49, 248–250. [Google Scholar] [CrossRef]
- Umscheid, C.A.; Margolis, D.J.; Grossman, C.E. Key concepts of clinical trials: A narrative review. Postgrad. Med. 2011, 123, 194–204. [Google Scholar] [CrossRef]
- Williams, B.A.; Jones, C.H.; Welch, V.; True, J.M. Outlook of pandemic preparedness in a post-COVID-19 world. NPJ Vaccines 2023, 8, 178. [Google Scholar] [CrossRef]
- Kirkham, J.J.; Williamson, P. Core outcome sets in medical research. BMJ Med. 2022, 1, e000284. [Google Scholar] [CrossRef]
- Tong, A.; Elliott, J.H.; Azevedo, L.C.; Baumgart, A.; Bersten, A.; Cervantes, L.; Chew, D.P.; Cho, Y.; Cooper, T.; Crowe, S.; et al. COVID-19-Core Outcomes Set (COS) Workshop Investigators. Core Outcomes Set for Trials in People with Coronavirus Disease 2019. Crit. Care Med. 2020, 48, 1622–1635. [Google Scholar] [CrossRef]
- Tong, A.; Baumgart, A.; Evangelidis, N.; Viecelli, A.K.; Carter, S.A.; Azevedo, L.C.; Cooper, T.; Bersten, A.; Cervantes, L.; Chew, D.P.; et al. COVID-19-Core Outcomes Set Investigators. Core Outcome Measures for Trials in People with Coronavirus Disease 2019: Respiratory Failure, Multiorgan Failure, Shortness of Breath, and Recovery. Crit. Care Med. 2021, 49, 503–516. [Google Scholar] [CrossRef]
- Dodd, S.; Clarke, M.; Becker, L.; Mavergames, C.; Fish, R.; Williamson, P.R. A taxonomy has been developed for outcomes in medical research to help improve knowledge discovery. J. Clin. Epidemiol. 2018, 96, 84–92. [Google Scholar] [CrossRef]
- Alemany, A.; Millat-Martinez, P.; Corbacho-Monne, M.; Malchair, P.; Ouchi, D.; de la Sierra, A.; Camprubi, D.; Maria Grau-Pujol, B.; Vila, J.; Mata, C.; et al. High-titre methylene blue-treated convalescent plasma as an early treatment for outpatients with COVID-19: A randomised, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 278–288. [Google Scholar] [CrossRef]
- Gharbharan, A.; Jordans, C.; Zwaginga, L.; Papageorgiou, G.; van Geloven, N.; van Wijngaarden, P.; den Hollander, J.; Karim, F.; van Leeuwen-Segarceanu, E.; Soetekouw, R.; et al. Outpatient convalescent plasma therapy for high-risk patients with early COVID-19: A randomized placebo-controlled trial. Clin. Microbiol. Infect. 2023, 29, 208–214. [Google Scholar] [CrossRef]
- Korley, F.K.; Durkalski-Mauldin, V.; Yeatts, S.D.; Schulman, K.; Davenport, R.D.; Dumont, L.J.; El Kassar, N.; Foster, L.D.; Hah, J.M.; Jaiswal, S.; et al. SIREN-C3PO Investigators. Early Convalescent Plasma for High-Risk Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, 1951–1960. [Google Scholar] [CrossRef]
- Libster, R.; Pérez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe COVID-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Shoham, S.; Bloch, E.M.; Lau, B.; Shenoy, A.G.; Mosnaim, G.; Gniadek, T.J.; Fukuta, Y.; Wada, K.; et al. Early Outpatient Treatment for COVID-19 with Convalescent Plasma. N. Engl. J. Med. 2022, 386, 1700–1711. [Google Scholar] [CrossRef]
- Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 229–237. [Google Scholar] [CrossRef]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Heller, B.; Wine, J.; et al. Bamlanivimab plus Etesevimab in Mild or Moderate COVID-19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Kim, J.Y.; Săndulescu, O.; Preotescu, L.L.; Rivera-Martínez, N.E.; Dobryanska, M.; Birlutiu, V.; Miftode, E.G.; Gaibu, N.; Caliman-Sturdza, O.; Florescu, S.A.; et al. A Randomized Clinical Trial of Regdanvimab in High-Risk Patients with Mild-to-Moderate Coronavirus Disease 2019. Open Forum Infect. Dis. 2022, 9, ofac406, Erratum in Open Forum Infect. Dis. 2023, 10, ofad196. [Google Scholar] [CrossRef]
- Montgomery, H.; Hobbs, F.D.R.; Padilla, F.; Arbetter, D.; Templeton, A.; Seegobin, S.; Kim, K.; Ayers, M.; Kohli, A.; Brown, M.M.; et al. Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 985–996. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Xiao, J.; Hooper, A.T.; Hamilton, J.D.; Musser, B.J.; et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, e81. [Google Scholar] [CrossRef]
- Adler, U.C.; Adler, M.S.; Padula, A.E.M.; Hotta, L.M.; de Toledo Cesar, A.; Diniz, J.N.M.; de Freitas Santos, H.; Martinez, E.Z. Homeopathy for COVID-19 in primary care: A randomized, double-blind, placebo-controlled trial (COVID-Simile study). J. Integr. Med. 2022, 20, 221–229. [Google Scholar] [CrossRef]
- Barco, S.; Voci, D.; Held, U.; Sebastian, T.; Bingisser, R.; Colucci, G.; Duerschmied, D.; Frenk, A.; Gerber, B.; Götschi, A.; et al. Enoxaparin for primary thromboprophylaxis in symptomatic outpatients with COVID-19 (OVID): A randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet Haematol. 2022, 9, e585–e593. [Google Scholar] [CrossRef]
- Bramante, C.T.; Huling, J.D.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.; Anderson, J.; et al. Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for COVID-19. N. Engl. J. Med. 2022, 387, 599–610. [Google Scholar] [CrossRef]
- Cairns, D.M.; Dulko, D.; Griffiths, J.K.; Golan, Y.; Cohen, T.; Trinquart, L.; Price, L.L.; Beaulac, K.R.; Selker, H.P. Efficacy of Niclosamide vs Placebo in SARS-CoV-2 Respiratory Viral Clearance, Viral Shedding, and Duration of Symptoms Among Patients with Mild to Moderate COVID-19: A Phase 2 Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2144942. [Google Scholar] [CrossRef]
- Clemency, B.M.; Varughese, R.; Gonzalez-Rojas, Y.; Morse, C.G.; Phipatanakul, W.; Levinson, M.; Carroll, K.; Brown, T.; Choi, B.; Camargo, C.A.; et al. Efficacy of Inhaled Ciclesonide for Outpatient Treatment of Adolescents and Adults with Symptomatic COVID-19: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 42–49. [Google Scholar] [CrossRef]
- Connors, J.M.; Brooks, M.M.; Sciurba, F.C.; Krishnan, J.A.; Bledsoe, J.R.; Kindzelski, A.; Ridker, P.M.; Rosovsky, R.P.; Hunninghake, G.M.; Lindsell, C.J.; et al. Effect of Antithrombotic Therapy on Clinical Outcomes in Outpatients with Clinically Stable Symptomatic COVID-19: The ACTIV-4B Randomized Clinical Trial. JAMA 2021, 326, 1703–1712. [Google Scholar] [CrossRef]
- Cools, F.; Virdone, S.; Sawhney, J.; Lopes, R.D.; Jacobson, B.; Arcelus, J.I.; Hobbs, F.D.R.; Gibbs, H.; Himmelreich, J.C.L.; MacCallum, P.; et al. Thromboprophylactic low-molecular-weight heparin versus standard of care in unvaccinated, at-risk outpatients with COVID-19 (ETHIC): An open-label, multicentre, randomised, controlled, phase 3b trial. Lancet Haematol. 2022, 9, e594–e604. [Google Scholar] [CrossRef]
- Duvignaud, A.; Lhomme, E.; Onaisi, R.; Escriou, N.; Lamontagne, F.; Lacombe, K.; Brousse, V.; Malvy, D.; Chapplain, J.M.; Esteve, C.; et al. Inhaled ciclesonide for outpatient treatment of COVID-19 in adults at risk of adverse outcomes: A randomised controlled trial (COVERAGE). Clin. Microbiol. Infect. 2022, 28, 1010–1016. [Google Scholar] [CrossRef]
- Gonzalez-Ochoa, A.J.; Raffetto, J.D.; Hernandez, A.G.; Parsa, N.; Gharavi, R.; Theethira, T.G.; Kunitake, H.; Bhakta, A.; Berry, S.M.; Davis, M.; et al. Sulodexide in the Treatment of Patients with Early Stages of COVID-19: A Randomized Controlled Trial. Thromb. Haemost. 2021, 121, 944–954. [Google Scholar] [CrossRef]
- Hinks, T.S.C.; Cureton, L.; Knight, R.; Wang, A.; Cane, J.L.; Barber, V.S.; Black, J.; Presland, L.; Dutton, S.J.; Melhorn, J.; et al. Azithromycin versus standard care in patients with mild-to-moderate COVID-19 (ATOMIC2): An open-label, randomised trial. Lancet Respir. Med. 2021, 9, 1130–1140. [Google Scholar] [CrossRef]
- Johnston, C.; Brown, E.R.; Stewart, J.; Karita, H.; Khouri, M.; Hambrick, H.R.; Day, C.L.; McKittrick, N.; Baden, L.R.; Madamba, J.; et al. Hydroxychloroquine with or without azithromycin for treatment of early SARS-CoV-2 infection among high-risk outpatient adults: A randomized clinical trial. EClinicalMedicine 2021, 33, 100773. [Google Scholar] [CrossRef]
- Khorshiddoust, R.R.; Khorshiddoust, S.R.; Hosseinabadi, T.; Ghanadi, A.; Azadmehr, A.; Rezaei, S.A.; Mortazavian, S.M.; Adibi, P. Efficacy of a multiple-indication antiviral herbal drug (Saliravira(R)) for COVID-19 outpatients: A pre-clinical and randomized clinical trial study. Biomed. Pharmacother. 2022, 149, 112729. [Google Scholar] [CrossRef]
- Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients with Symptomatic COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 2292–2300. [Google Scholar] [CrossRef]
- McCarthy, M.W.; Naggie, S.; Boulware, D.R.; Bower, W.A.; Baughman, A.L.; Saydah, S.; Oliver, S.E.; McConnell, K.; Morey, R.E.; Craft, D.W.; et al. Effect of Fluvoxamine vs Placebo on Time to Sustained Recovery in Outpatients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2023, 329, 296–305. [Google Scholar] [CrossRef]
- McCreary, M.R.; Schnell, P.M.; Rhoda, D.A. Randomized double-blind placebo-controlled proof-of-concept trial of resveratrol for outpatient treatment of mild coronavirus disease (COVID-19). Sci. Rep. 2022, 12, 10978. [Google Scholar] [CrossRef]
- Mitjà, O.; Corbacho-Monné, M.; Ubals, M.; Tebé, C.; Peñafiel, J.; Tobias, A.; Ballana, E.; Alemany, A.; Riera-Martí, N.; Pérez, C.A.; et al. Hydroxychloroquine for Early Treatment of Adults with Mild Coronavirus Disease 2019: A Randomized, Controlled Trial. Clin. Infect. Dis. 2021, 73, e4073–e4081. [Google Scholar] [CrossRef]
- Naggie, S.; Boulware, D.R.; Lindsell, C.J.; Pettit, N.N.; Kanack, A.T.; Bellamy, C.H.; Kelleher, J.; Griffith, D.; Kasten, M.J.; Natarajan, K.; et al. Effect of Higher-Dose Ivermectin for 6 Days vs Placebo on Time to Sustained Recovery in Outpatients with COVID-19: A Randomized Clinical Trial. JAMA 2023, 329, 888–897. [Google Scholar] [CrossRef]
- Naggie, S.; Boulware, D.R.; Lindsell, C.J.; Pettit, N.N.; Kanack, A.T.; Bellamy, C.H.; Kelleher, J.; Griffith, D.; Kasten, M.J.; Natarajan, K.; et al. Effect of Ivermectin vs Placebo on Time to Sustained Recovery in Outpatients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2022, 328, 1595–1603. [Google Scholar] [CrossRef]
- Oldenburg, C.E.; Pinsky, B.A.; Brogdon, J.; Chen, C.; Ruder, K.; Zhong, L.; Doan, T.; McNaughton, C.D.; Khalil, P.; Goldman, J.D.; et al. Effect of Oral Azithromycin vs Placebo on COVID-19 Symptoms in Outpatients with SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA 2021, 326, 490–498. [Google Scholar] [CrossRef]
- Puskarich, M.A.; Cummins, N.W.; Ingraham, N.E.; Naud, B.M.; Floberg, J.M.; Patel, B.; Nanda, S.; Pipke, M.; Larson, R.J.; Deitchman, A.N.; et al. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine 2021, 37, 100957. [Google Scholar] [CrossRef]
- Reis, G.; Dos Santos Moreira Silva, E.A.; Medeiros Silva, D.C.; Thabane, L.; Park, J.J.H.; Forrest, J.I.; Harari, O.; Galvez, V.; Ferraz, P.; Cossi, M.S.; et al. Expression of concern—Effect of early treatment with metformin on risk of emergency care and hospitalization among patients with COVID-19: The TOGETHER randomized platform clinical trial. Lancet Reg. Health Am. 2024, 31, 100703. [Google Scholar] [CrossRef]
- Reis, G.; Dos Santos Moreira Silva, E.A.; Medeiros Silva, D.C.; Thabane, L.; Park, J.J.H.; Forrest, J.I.; Harari, O.; Galvez, V.; Ferraz, P.; Cossi, M.S.; et al. Oral Fluvoxamine with Inhaled Budesonide for Treatment of Early-Onset COVID-19: A Randomized Platform Trial. Ann. Intern. Med. 2023, 176, 667–675. [Google Scholar] [CrossRef]
- Reis, G.; Dos Santos Moreira-Silva, E.A.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; Dos Santos, C.V.Q.; de Souza Campos, V.H.; Nogueira, A.M.R.; de Almeida, A.P.F.G.; et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial. Lancet Glob. Health 2022, 10, e42–e51, Erratum in Lancet Glob. Health 2022, 10, e481; Erratum in Lancet Glob. Health 2022, 10, e1246. [Google Scholar] [CrossRef]
- Stewart, T.G.; Rebolledo, P.A.; Mourad, A.; Lindsell, C.J.; Boulware, D.R.; McCarthy, M.W.; Thicklin, F.; Garcia Del Sol, I.T.; Bramante, C.T.; Lenert, L.A.; et al. Higher-Dose Fluvoxamine and Time to Sustained Recovery in Outpatients with COVID-19: The ACTIV-6 Randomized Clinical Trial. JAMA 2023, 330, 2354–2363. [Google Scholar] [CrossRef]
- Reis, G.; Silva, E.; Silva, D.C.M.; Thabane, L.; Park, J.J.H.; Forrest, J.I.; Harari, O.; Galvez, V.; Ferraz, P.; Cossi, M.S.; et al. Effect of Early Treatment with Ivermectin among Patients with COVID-19. N. Engl. J. Med. 2022, 386, 1721–1731. [Google Scholar] [CrossRef]
- Rezai, M.S.; Ahangarkani, F.; Hill, A.; Kashaninasab, F.; Mehravaran, H.; Emadi-Baygi, M.; Haghighi-Asl, H.; Ashrafian-Bonab, M.; Rezaei, M.S.; Baradaran, A.; et al. Non-effectiveness of Ivermectin on Inpatients and Outpatients with COVID-19; Results of Two Randomized, Double-Blinded, Placebo-Controlled Clinical Trials. Front. Med. 2022, 9, 919708. [Google Scholar] [CrossRef]
- Rodrigues, C.; Freitas-Santos, R.S.; Levi, J.E.; Bertolaccini, L.F.; Scopel, D.; Gouvêa, M.L.; Cavalcanti, L.F.; Olivares, T.S.; Medeiros, A.C.; Carvalho, P.M.; et al. Hydroxychloroquine plus azithromycin early treatment of mild COVID-19 in an outpatient setting: A randomized, double-blinded, placebo-controlled clinical trial evaluating viral clearance. Int. J. Antimicrob. Agents 2021, 58, 106428. [Google Scholar] [CrossRef]
- Rossignol, J.F.; Bardin, M.C.; Fulgencio, J.; Mogelnicki, D.; Brechot, C. A randomized double-blind placebo-controlled clinical trial of nitazoxanide for treatment of mild or moderate COVID-19. EClinicalMedicine 2022, 45, 101310. [Google Scholar] [CrossRef]
- Schwartz, I.; Boesen, M.E.; Cerchiaro, G.; Doram, C.; Edwards, B.D.; Ganesh, A.; Greenfield, J.; Jamieson, S.; Karnik, V.; Kenney, C.; et al. Assessing the efficacy and safety of hydroxychloroquine as outpatient treatment of COVID-19: A randomized controlled trial. CMAJ Open 2021, 9, E693–E702. [Google Scholar] [CrossRef]
- Skipper, C.P.; Pastick, K.A.; Engen, N.W.; Bangdiwala, A.S.; Abassi, M.; Lofgren, S.M.; Williams, D.A.; Okafor, E.C.; Pullen, M.F.; Nicol, M.R.; et al. Hydroxychloroquine in Nonhospitalized Adults with Early COVID-19: A Randomized Trial. Ann. Intern. Med. 2020, 173, 623–631. [Google Scholar] [CrossRef]
- Spivak, A.M.; Barney, B.J.; Greene, T.; Holubkov, R.; Olsen, C.S.; Bridges, J.; Srivastava, R.; Webb, B.; Sebahar, F.; Huffman, A.; et al. A Randomized Clinical Trial Testing Hydroxychloroquine for Reduction of SARS-CoV-2 Viral Shedding and Hospitalization in Early Outpatient COVID-19 Infection. Microbiol. Spectr. 2023, 11, e0467422. [Google Scholar] [CrossRef]
- Tardif, J.C.; Bouabdallaoui, N.; L’Allier, P.L.; Gaudet, D.; Shah, B.; Pillinger, M.H.; Lopez-Sendon, J.; da Luz, P.; Verret, L.; Audet, S.; et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): A phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir. Med. 2021, 9, 924–932. [Google Scholar] [CrossRef]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients with SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef]
- Bosaeed, M.; Alharbi, A.; Mahmoud, E.; Alqahtani, H.; Al Sulaiman, R.; Al Aithan, A.M.; Alamri, M.; Al Masood, A.; Al Mutair, A.; Al Omari, A.; et al. Efficacy of favipiravir in adults with mild COVID-19: A randomized, double-blind, multicentre, placebo-controlled clinical trial. Clin. Microbiol. Infect. 2022, 28, 602–608. [Google Scholar] [CrossRef]
- Butler, C.C.; Hobbs, F.D.R.; Gbinigie, O.A.; Mbisa, J.L.; Hared, A.; Dunbar, J.K.; Petrou, S.; Holmes, J.; Gafos, M.; Preuss, M.; et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): An open-label, platform-adaptive randomised controlled trial. Lancet 2023, 401, 281–293. [Google Scholar] [CrossRef]
- Feld, J.J.; Kandel, C.; Biondi, M.J.; Barkema, R.; McDonald-Barnes, L.; Gnirke, J.; Powis, J.; Hayes, M.; Brown, K.A.; Webb, G.J.; et al. Peginterferon lambda for the treatment of outpatients with COVID-19: A phase 2, placebo-controlled randomised trial. Lancet Respir. Med. 2021, 9, 498–510. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Negron, C.; Sostman, H.D.; Sharma, S.; et al. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Simón-Campos, A.; Kaplow, R.; Aftab, B.T.; Pypstra, R.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Siripongboonsitti, T.; Nontawong, N.; Tawinprai, K.; Suptawiwat, O.; Soonklang, K.; Poovorawan, Y.; Mahanonda, N. Efficacy of combined COVID-19 convalescent plasma with oral RNA-dependent RNA polymerase inhibitor treatment versus neutralizing monoclonal antibody therapy in COVID-19 outpatients: A multi-center, non-inferiority, open-label randomized controlled trial (PlasMab). Microbiol. Spectr. 2023, 11, e0325723. [Google Scholar]
- Horga, A.; Saenz, R.; Yilmaz, G.; Simón-Campos, A.; Pietropaolo, K.; Stubbings, W.J.; Collinson, N.; Ishak, L.; Zrinscak, B.; Belanger, B.; et al. Oral bemnifosbuvir (AT-527) vs placebo in patients with mild-to-moderate COVID-19 in an outpatient setting (MORNINGSKY). Future Virol. 2023, 18, 839–853. [Google Scholar] [CrossRef]
- Jagannathan, P.; Chew, K.W.; Giganti, M.J.; Hughes, M.D.; Moser, C.; Main, M.J.; Monk, P.D.; Javan, A.C.; Li, J.Z.; Fletcher, C.V.; et al. ACTIV-2/A5401 Study Team. Safety and efficacy of inhaled interferon-β1a (SNG001) in adults with mild-to-moderate COVID-19: A randomized, controlled, phase II trial. EClinicalMedicine 2023, 65, 102250. [Google Scholar] [CrossRef]
- Jagannathan, P.; Andrews, J.R.; Bonilla, H.; Dewald, C.F.; Lu, K.; Nelson, C.W.; Yang, P.; Donohue, K.; Strohmeier, S.; Taylor, J.D.; et al. Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: A randomized placebo-controlled trial. Nat. Commun. 2021, 12, 1967. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martin, E.; Williams-Diaz, A.; Brown, M.L.; Du, J.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Kaizer, A.M.; Shapiro, N.I.; Wild, J.; Ginde, A.A.; Chopra, A.; Flynn, C.; Grundmeier, R.; Boulware, D.R.; Fenton, L.Z.; Ziegler, J.; et al. Lopinavir/ritonavir for treatment of non-hospitalized patients with COVID-19: A randomized clinical trial. Int. J. Infect. Dis. 2023, 128, 223–229. [Google Scholar] [CrossRef]
- Lowe, D.M.; Brown, L.K.; Chowdhury, K.; Davey, S.; Yee, P.; Ikeji, F.; Ndoutoumou, A.; Shah, D.; Lennon, A.; Rai, A.; et al. FLARE Investigators. Favipiravir, lopinavir-ritonavir, or combination therapy (FLARE): A randomised, double-blind, 2 × 2 factorial placebo-controlled trial of early antiviral therapy in COVID-19. PLoS Med. 2022, 19, e1004120. [Google Scholar] [CrossRef]
- Parienti, J.J.; Prazuck, T.; Peyro-Saint-Paul, L.; Fournier, C.; Valentin, A.; Belin, L.; Le Moal, G.; Reynes, J.; Guedj, J. Effect of Tenofovir Disoproxil Fumarate and Emtricitabine on nasopharyngeal SARS-CoV-2 viral load burden amongst outpatients with COVID-19: A pilot, randomized, open-label phase 2 trial. EClinicalMedicine 2021, 38, 100993. [Google Scholar] [CrossRef]
- Reis, G.; Moreira Silva, E.A.D.S.; Medeiros Silva, D.C.; Thabane, L.; Singh, G.; Park, J.J.H.; Forrest, J.I.; Harari, O.; Quirino Dos Santos, C.V.; Guimarães de Almeida, A.P.F.; et al. Effect of Early Treatment with Hydroxychloroquine or Lopinavir and Ritonavir on Risk of Hospitalization Among Patients with COVID-19: The TOGETHER Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e216468, Erratum in JAMA Netw. Open 2021, 4, e2130442. [Google Scholar] [CrossRef]
- Reis, G.; Moreira Silva, E.A.S.; Medeiros Silva, D.C.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; Dos Santos, C.V.Q.; Muricy, A.C.C.; de Almeida, A.W.P.; Callegari, E.D.; et al. Early Treatment with Pegylated Interferon Lambda for COVID-19. N. Engl. J. Med. 2023, 388, 518–528. [Google Scholar] [CrossRef]
- Roozbeh, F.; Saeedi, M.; Alizadeh-Navaei, R.; Shabani, M.; Karkhah, S.; Teymouri, S.; Khoshnood, Z.; Roozbeh, H. Sofosbuvir and daclatasvir for the treatment of COVID-19 outpatients: A double-blind, randomized controlled trial. J. Antimicrob. Chemother. 2021, 76, 753–757. [Google Scholar] [CrossRef]
- Vaezi, A.; Salmasi, M.; Soltaninejad, F.; Salahi, M.; Javanmard, S.H.; Amra, B. Favipiravir in the Treatment of Outpatient COVID-19: A Multicenter, Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. Adv. Respir. Med. 2023, 91, 18–25. [Google Scholar] [CrossRef]
- Weis, N.; Bollerup, S.; Sund, J.D.; Glamann, J.B.; Vinten, C.; Jensen, L.R.; Sejling, C.; Kledal, T.N.; Rosenkilde, M.M. Amantadine for COVID-19 treatment (ACT) study: A randomized, double-blinded, placebo-controlled clinical trial. Clin. Microbiol. Infect. 2023, 29, 1313–1319. [Google Scholar] [CrossRef]
- Adel Mehraban, M.S.; Shirzad, M.; Mohammad Taghizadeh Kashani, L.; Ahmadian-Attari, M.M.; Safari, A.A.; Ansari, N.; Hatami, H.; Kamalinejad, M. Efficacy and safety of add-on Viola odorata L. in the treatment of COVID-19: A randomized double-blind controlled trial. J. Ethnopharmacol. 2023, 304, 116058. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Keyhanian, N.; Ghaderkhani, S.; Dashti-Khavidaki, S.; Shokouhi Shoormasti, R.; Pourpak, Z. A Pilot Study on Controlling Coronavirus Disease 2019 (COVID-19) Inflammation Using Melatonin Supplement. Iran. J. Allergy Asthma Immunol. 2021, 20, 494–499. [Google Scholar] [CrossRef]
- Ben Abdallah, S.; Mhalla, Y.; Trabelsi, I.; Sekma, A.; Youssef, R.; Bel Haj Ali, K.; Ben Soltane, H.; Yacoubi, H.; Msolli, M.A.; Stambouli, N.; et al. Twice-Daily Oral Zinc in the Treatment of Patients with Coronavirus Disease 2019: A Randomized Double-Blind Controlled Trial. Clin. Infect. Dis. 2023, 76, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Bencheqroun, H.; Ahmed, Y.; Kocak, M.; Melike, Y.; Hafidi, H.; Atfi, A.; El Fatimy, R.; El Ouali Lalami, A.; Haidour, A.; Boukhari, A.; et al. A Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Safety and Efficacy of ThymoQuinone Formula (TQF) for Treating Outpatient SARS-CoV-2. Pathogens 2022, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.M.; Nadella, S.; Zhao, X.; Dima, R.J.; Jordan-Martin, N.; Demestichas, B.R.; Kleeman, S.O.; Ferrer, M.; Janowitz, T. Oral famotidine versus placebo in non-hospitalised patients with COVID-19: A randomised, double-blind, data-intense, phase 2 clinical trial. Gut 2022, 71, 879–888. [Google Scholar] [CrossRef]
- De Boeck, I.; Cauwenberghs, E.; Spacova, I.; Gehrmann, T.; Eilers, T.; Delanghe, L.; Wittouck, S.; Bron, P.A.; Henkens, T.; Gamgami, I.; et al. Randomized, Double-Blind, Placebo-Controlled Trial of a Throat Spray with Selected Lactobacilli in COVID-19 Outpatients. Microbiol. Spectr. 2022, 10, e0168222. [Google Scholar] [CrossRef]
- Hasanpour, M.; Safari, H.; Mohammadpour, A.H.; Amini, Z.; Iranshahy, M.; Ashrafzadeh, M.; Zamiri, R.E.; Sahebkar, A.; Abbasi, S.H.; Ghorbani, M. Efficacy of Covexir(R) (Ferula foetida oleo-gum) treatment in symptomatic improvement of patients with mild to moderate COVID-19: A randomized, double-blind, placebo-controlled trial. Phytother. Res. 2022, 36, 4504–4515. [Google Scholar] [CrossRef]
- Khan, A.; Iqtadar, S.; Mumtaz, S.U.; Akhtar, N.; Muhammad, A.; Ullah, H.; Hussain, A.; Ali, S.; Shah, J.; Khan, M.N.; et al. Oral Co-Supplementation of Curcumin, Quercetin, and Vitamin D3 as an Adjuvant Therapy for Mild to Moderate Symptoms of COVID-19-Results from a Pilot Open-Label, Randomized Controlled Trial. Front. Pharmacol. 2022, 13, 898062. [Google Scholar] [CrossRef] [PubMed]
- Khoo, S.H.; FitzGerald, R.; Saunders, G.; Whitehouse, T.; O’Kane, P.; Conibear, T.; Gupta, R.; Catterick, D.; Klein, N.; Berry, L.; et al. Molnupiravir versus placebo in unvaccinated and vaccinated patients with early SARS-CoV-2 infection in the UK (AGILE CST-2): A randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Infect. Dis. 2023, 23, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kosmopoulos, A.; Bhatt, D.L.; Meglis, G.; Klein, A.L.; Gornik, H.L.; Chhatriwalla, A.K.; Shoemaker, A.; Misra, S.; Ram, C.V.; Lincoff, A.M. A randomized trial of icosapent ethyl in ambulatory patients with COVID-19. iScience 2021, 24, 103040. [Google Scholar] [CrossRef]
- Rohani, M.; Mozaffar, H.; Mesri, M.; Shokri, M.; Delaney, D.; Karimy, M. Evaluation and comparison of vitamin A supplementation with standard therapies in the treatment of patients with COVID-19. East Mediterr. Health J. 2022, 28, 673–681. [Google Scholar] [CrossRef]
- Tandon, M.; Wu, W.; Moore, K.; Winchester, S.; Tu, Y.P.; Miller, C.; Kodgule, R.; Pendse, A.; Rangwala, S.; Joshi, S.; et al. SARS-CoV-2 accelerated clearance using a novel nitric oxide nasal spray (NONS) treatment: A randomized trial. Lancet Reg. Health Southeast Asia 2022, 3, 100036. [Google Scholar] [CrossRef]
- Martin, D.E.; Pandey, N.; Chavda, P.; Singh, G.; Sutariya, R.; Sancilio, F.; Tripp, R.A. Oral Probenecid for Nonhospitalized Adults with Symptomatic Mild-to-Moderate COVID-19. Viruses 2023, 15, 1508. [Google Scholar] [CrossRef]
- Plasse, T.F.; Delgado, B.; Potts, J.; Abramson, D.; Fehrmann, C.; Fathi, R.; McComsey, G.A. A randomized, placebo-controlled pilot study of upamostat, a host-directed serine protease inhibitor, for outpatient treatment of COVID-19. Int. J. Infect. Dis. 2023, 128, 148–156. [Google Scholar] [CrossRef]
- Ruzhentsova, T.A.; Oseshnyuk, R.A.; Soluyanova, T.N.; Dmitrikova, E.P.; Mustafaev, D.M.; Pokrovskiy, K.A.; Markova, T.N.; Rusanova, M.G.; Kostina, N.E.; Agafina, A.S.; et al. Phase 3 trial of coronavir (favipiravir) in patients with mild to moderate COVID-19. Am. J. Transl. Res. 2021, 13, 12575–12587. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, S.; Vahdat Shariatpanahi, Z.; Shahbazi, E. Bosentan for high-risk outpatients with COVID-19 infection: A randomized, double blind, placebo-controlled trial. EClinicalMedicine 2023, 62, 102117. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.S.; Molnar, J.; Somberg, J. The Efficacy of Nitric Oxide-Generating Lozenges on Outcome in Newly Diagnosed COVID-19 Patients of African American and Hispanic Origin. Am. J. Med. 2023, 136, 1035–1040.e11. [Google Scholar] [CrossRef] [PubMed]
- Avezum, Á.; Oliveira Junior, H.A.; Neves, P.D.M.M.; Alves, L.B.O.; Cavalcanti, A.B.; Rosa, R.G.; Veiga, V.C.; Azevedo, L.C.P.; Zimmermann, S.L.; Silvestre, O.M.; et al. Rivaroxaban to prevent major clinical outcomes in non-hospitalised patients with COVID-19: The CARE-COALITION VIII randomised clinical trial. EClinicalMedicine 2023, 60, 102004. [Google Scholar] [CrossRef]
- Jilg, N.; Chew, K.W.; Giganti, M.J.; Daar, E.S.; Wohl, D.A.; Javan, A.C.; Kantor, A.; Moser, C.; Coombs, R.W.; Neytman, G.; et al. ACTIV-2/A5401 Study Team. One Week of Oral Camostat Versus Placebo in Nonhospitalized Adults with Mild-to-Moderate Coronavirus Disease 2019: A Randomized Controlled Phase 2 Trial. Clin. Infect. Dis. 2023, 77, 941–949. [Google Scholar] [CrossRef]
- Piazza, G.; Spyropoulos, A.C.; Hsia, J.; Goldin, M.; Towner, W.J.; Go, A.S.; Bull, T.M.; Weng, S.; Lipardi, C.; Barnathan, E.S.; et al. Rivaroxaban for Prevention of Thrombotic Events, Hospitalization, and Death in Outpatients with COVID-19: A Randomized Clinical Trial. Circulation 2023, 147, 1891–1901. [Google Scholar] [CrossRef]
- Levitt, J.E.; Hedlin, H.; Duong, S.; Lu, D.; Lee, J.; Bunning, B.; Elkarra, N.; Pinsky, B.A.; Heffernan, E.; Springman, E.; et al. Evaluation of Acebilustat, a Selective Inhibitor of Leukotriene B4 Biosynthesis, for Treatment of Outpatients with Mild-Moderate Coronavirus Disease 2019: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Clin. Infect. Dis. 2023, 77, 186–193. [Google Scholar] [CrossRef]
- Seely, D.; Legacy, M.; Conte, E.; Keates, C.; Psihogios, A.; Ramsay, T.; Fergusson, D.A.; Kanji, S.; Simmons, J.G.; Wilson, K. Dietary supplements to reduce symptom severity and duration in people with SARS-CoV-2: A double-blind randomised controlled trial. BMJ Open 2023, 13, e073761. [Google Scholar] [CrossRef]
- Boulware, D.R.; Lindsell, C.J.; Stewart, T.G.; Hernandez, A.F.; Collins, S.; McCarthy, M.W.; Jayaweera, D.; Gentile, N.; Castro, M.; Sulkowski, M.; et al. ACTIV-6 Study Group and Investigators. Inhaled Fluticasone Furoate for Outpatient Treatment of COVID-19. N. Engl. J. Med. 2023, 389, 1085–1095. [Google Scholar] [CrossRef]
- Qaraaty, M.; Bahrami, M.; Azimi, S.A.; Hashem-Dabaghian, F.; Saberi, S.; Abbas Zaidi, S.M.; Sahebkar, A.; Enayati, A. Lavender (Lavandula angustifolia) syrup as an adjunct to standard care in patients with mild to moderate COVID-19: An open-label, randomized, controlled clinical trial. Avicenna J. Phytomed. 2023, 13, 400–411. [Google Scholar]
- Barco, S.; Virdone, S.; Götschi, A.; Ageno, W.; Arcelus, J.I.; Bingisser, R.; Colucci, G.; Cools, F.; Duerschmied, D.; Gibbs, H.; et al. Enoxaparin for symptomatic COVID-19 managed in the ambulatory setting: An individual patient level analysis of the OVID and ETHIC trials. Thromb. Res. 2023, 230, 27–32. [Google Scholar] [CrossRef]
- Reiersen, A.M.; Mattar, C.; Bender Ignacio, R.A.; Boulware, D.R.; Lee, T.C.; Hess, R.; Lankowski, A.J.; McDonald, E.G.; Miller, J.P.; Powderly, W.G.; et al. The STOP COVID 2 Study: Fluvoxamine vs Placebo for Outpatients with Symptomatic COVID-19, a Fully Remote Randomized Controlled Trial. Open Forum Infect. Dis. 2023, 10, ofad419. [Google Scholar] [CrossRef]
- Shapiro, A.E.; Sarkis, E.; Acloque, J.; Free, A.; Gonzalez-Rojas, Y.; Hussain, R.; Juarez, E.; Moya, J.; Parikh, N.; Inman, D.; et al. Intramuscular vs Intravenous SARS-CoV-2 Neutralizing Antibody Sotrovimab for Treatment of COVID-19 (COMET-TAIL): A Randomized Noninferiority Clinical Trial. Open Forum Infect. Dis. 2023, 10, ofad354. [Google Scholar] [CrossRef]
- Boffito, M.; Dolan, E.; Singh, K.; Holmes, W.; Wildum, S.; Horga, A.; Pietropaolo, K.; Zhou, X.J.; Clinch, B.; Collinson, N.; et al. A Phase 2 Randomized Trial Evaluating the Antiviral Activity and Safety of the Direct-Acting Antiviral Bemnifosbuvir in Ambulatory Patients with Mild or Moderate COVID-19 (MOONSONG Study). Microbiol. Spectr. 2023, 11, e0007723. [Google Scholar] [CrossRef]
- Ison, M.G.; Popejoy, M.; Evgeniev, N.; Tzekova, M.; Mahoney, K.; Betancourt, N.; Li, Y.; Gupta, D.; Narayan, K.; Hershberger, E.; et al. Efficacy and Safety of Adintrevimab (ADG20) for the Treatment of High-Risk Ambulatory Patients with Mild or Moderate Coronavirus Disease 2019: Results from a Phase 2/3, Randomized, Placebo-Controlled Trial (STAMP) Conducted During Delta Predominance and Early Emergence of Omicron. Open Forum Infect. Dis. 2023, 10, ofad279. [Google Scholar]


| Outcome Category | No. of Studies (%) | Top Three Reported Outcomes |
|---|---|---|
| Hospitalization & Healthcare Utilization | 82 (90%) | Hospitalization, Emergency department visits, Ventilation |
| Symptom Severity & Duration | 71 (78%) | Time to symptom resolution, Severity, Resolution |
| Mortality | 65 (71%) | Death, Time to death |
| Disease Progression | 31 (34%) | Severe disease, Ordinal scale change |
| Quality of Life & Functional Status | 19 (21%) | Functional limitation, Quality of Life, Recovery time |
| Other Clinical Events | 9 (10%) | Cardiovascular events, Long COVID |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kow, C.S.; Ramachandram, D.S.; Conway, B.R.; Hasan, S.S. Documenting Clinical Outcomes Assessed in Outpatients with COVID-19: A Scoping Review of Randomized Controlled Trials. COVID 2025, 5, 199. https://doi.org/10.3390/covid5120199
Kow CS, Ramachandram DS, Conway BR, Hasan SS. Documenting Clinical Outcomes Assessed in Outpatients with COVID-19: A Scoping Review of Randomized Controlled Trials. COVID. 2025; 5(12):199. https://doi.org/10.3390/covid5120199
Chicago/Turabian StyleKow, Chia Siang, Dinesh Sangarran Ramachandram, Barbara R. Conway, and Syed Shahzad Hasan. 2025. "Documenting Clinical Outcomes Assessed in Outpatients with COVID-19: A Scoping Review of Randomized Controlled Trials" COVID 5, no. 12: 199. https://doi.org/10.3390/covid5120199
APA StyleKow, C. S., Ramachandram, D. S., Conway, B. R., & Hasan, S. S. (2025). Documenting Clinical Outcomes Assessed in Outpatients with COVID-19: A Scoping Review of Randomized Controlled Trials. COVID, 5(12), 199. https://doi.org/10.3390/covid5120199

