Previous Issue
Volume 5, December
 
 

Micro, Volume 6, Issue 1 (March 2026) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2158 KB  
Article
Cellular Toxicity of Zinc Quantum Dots in a Mammalian Model (CHO Cells)
by Luis Alamo-Nole and Glorimar Rivera-Rodriguez
Micro 2026, 6(1), 10; https://doi.org/10.3390/micro6010010 - 1 Feb 2026
Viewed by 25
Abstract
The production of quantum dots (QDs) has increased due to their wide variety of commercial products and applications. QDs can be dangerous in the environment because their small size can encourage their incorporation into living systems. In this project, ZnS and ZnSSe were [...] Read more.
The production of quantum dots (QDs) has increased due to their wide variety of commercial products and applications. QDs can be dangerous in the environment because their small size can encourage their incorporation into living systems. In this project, ZnS and ZnSSe were synthesized under microwave irradiation, generating a water-stable nanomaterial. The bandgap energies calculated using the UV-Vis spectra were 3.81 and 3.86 eV for ZnS and ZnSSe QDs, respectively, indicating that the selenium worked as a dopant agent. The photoluminescence analysis shows narrow emission peaks, confirming a low size distribution, and the selenium doping generated a blue shift. The crystal size of both nanomaterials was around 7 nm. The cellular toxicity of these nanomaterials was evaluated using Chinese Hamster Ovary (CHO) Cells (a standard mammalian cell model). The results suggest that ZnS and ZnSSe QDs slightly affect the viability of CHO Cells, but Zn2+ decreases the viability at concentrations higher than 20 mg/L. The content of zinc inside cells (by ICP-OES) suggested that QDs can enter cells more easily than Zn2+. Therefore, the decrease in cell viability caused by Zn2+ outside the cells is likely due to its effect on cell membrane integrity, suggesting that these nanomaterials are less toxic than bulk materials. Full article
Show Figures

Figure 1

18 pages, 1914 KB  
Article
Impact of Pure and Metal-Doped Ferrihydrite Particles on Growth Medium Chemistry and Microbiological Activity of Pseudomonas putida
by Abbass Akhdar, Amine Geneste, Asfaw Zegeye, Bénédicte Prélot and Jerzy Zajac
Micro 2026, 6(1), 9; https://doi.org/10.3390/micro6010009 - 29 Jan 2026
Viewed by 80
Abstract
Fe-oxyhydroxides can incorporate toxic metals during the formation of mineral phases in soils and sediments, thereby potentially altering the environmental reactivity of metals and impacting the microbial communities. In this study, isothermal microcalorimetry has been used to monitor the metabolic activity of Pseudomonas [...] Read more.
Fe-oxyhydroxides can incorporate toxic metals during the formation of mineral phases in soils and sediments, thereby potentially altering the environmental reactivity of metals and impacting the microbial communities. In this study, isothermal microcalorimetry has been used to monitor the metabolic activity of Pseudomonas putida KT2440 exposed to pure ferrihydrite and to Pb-, Cd-, and As-bearing ferrihydrites under oxygen-limited conditions. Calorimetric measurements of the integral heat released during the exponential growth were combined with the analysis of dissolved iron and heavy metals, as well as the glucose uptake, to understand how heavy metal incorporation modifies mineral reactivity and microbial heat output. Pure ferrihydrite decreased the integral heat by about 45%, primarily due to glucose and phosphate depletion, Fe(III) leaching, and mineral–cell aggregation. Heavy metal dopants were found to modulate nutrient availability, surface charge, and Fe solubilization, which, in turn, influenced the integral heat. Pb-Fh generated the highest ferrihydrite dissolution and metabolic heat, with a maximum effect at intermediate substitution levels. As-Fh induced moderate Fe release and metabolic activity, consistent with the enhanced phosphate sorption and lowered surface charge. Cd-bearing Fh showed minimal reactivity and yielded the lowest heat output. Microcalorimetry was proven useful for unraveling microbe–mineral interactions in complex contaminated environments. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Graphical abstract

56 pages, 6343 KB  
Review
Advanced 3D/4D Bioprinting of Flexible Conductive Materials for Regenerative Medicine: From Bioinspired Design to Intelligent Regeneration
by Kuikui Zhang, Lezhou Fang, Can Xu, Weiwei Zhou, Xiaoqiu Deng, Chenkun Shan, Quanling Zhang and Lijia Pan
Micro 2026, 6(1), 8; https://doi.org/10.3390/micro6010008 - 21 Jan 2026
Viewed by 153
Abstract
Regenerative medicine is increasingly leveraging the synergies between bioinspired conductive biomaterials and 3D/4D bioprinting to replicate the native electroactive and hierarchical microenvironments essential for functional tissue restoration. However, a critical gap remains in the intelligent integration of these technologies to achieve dynamic, responsive [...] Read more.
Regenerative medicine is increasingly leveraging the synergies between bioinspired conductive biomaterials and 3D/4D bioprinting to replicate the native electroactive and hierarchical microenvironments essential for functional tissue restoration. However, a critical gap remains in the intelligent integration of these technologies to achieve dynamic, responsive tissue regeneration. This review introduces a “bioinspired material–printing–function” triad framework to systematically synthesize recent advances in: (1) tunable conductive materials (polymers, carbon-based systems, metals, MXenes) designed to mimic the electrophysiological properties of native tissues; (2) advanced 3D/4D printing technologies (vat photopolymerization, extrusion, inkjet, and emerging modalities) enabling the fabrication of biomimetic architectures; and (3) functional applications in neural, cardiac, and musculoskeletal tissue engineering. We highlight how bioinspired conductive scaffolds enhance electrophysiological behaviors—emulating natural processes such as promoting axon regeneration cardiomyocyte synchronization, and osteogenic mineralization. Crucially, we identify multi-material 4D bioprinting as a transformative bioinspired approach to overcome conductivity–degradation trade-offs and enable shape-adaptive, smart scaffolds that dynamically respond to physiological cues, mirroring the adaptive nature of living tissues. This work provides the first roadmap toward intelligent electroactive regeneration, shifting the paradigm from static implants to dynamic, biomimetic bioelectronic microenvironments. Future translation will require leveraging AI-driven bioinspired design and organ-on-a-chip validation to address challenges in vascularization, biosafety, and clinical scalability. Full article
Show Figures

Figure 1

13 pages, 2145 KB  
Article
Dual-Target Antimicrobial Strategy Combining Cell-Penetrating Protamine Peptides and Membrane-Active ε-Poly-L-lysine
by Ryosuke Nakamura, Rie Togawa, Daisuke Koizumi, Masataka Kawarasaki, Keishi Iohara and Michiyo Honda
Micro 2026, 6(1), 7; https://doi.org/10.3390/micro6010007 - 21 Jan 2026
Viewed by 110
Abstract
Dental caries is a major global health issue associated with biofilm formation by Streptococcus mutans (S. mutans). Conventional antimicrobials often fail to eliminate biofilms due to their structural resistance, highlighting the need for new strategies. This study investigated the antibacterial and [...] Read more.
Dental caries is a major global health issue associated with biofilm formation by Streptococcus mutans (S. mutans). Conventional antimicrobials often fail to eliminate biofilms due to their structural resistance, highlighting the need for new strategies. This study investigated the antibacterial and antibiofilm effects of protamine peptides (PPs), which are cell-penetrating antimicrobial peptides derived from salmon protamine, alone and in combination with antimicrobial agents. Antimicrobial susceptibility was evaluated using alamarBlue® and colony count assays, while biofilm formation was analyzed using crystal violet staining, confocal microscopy, and extracellular polysaccharide (EPS) quantification. PP exhibited moderate antibacterial activity but strongly suppressed EPS accumulation and biofilm development, leading to a flattened biofilm structure. Cotreatment with ε-poly-L-lysine (PL) significantly enhanced antibacterial and antibiofilm effects compared with either agent alone, whereas this effect was not observed with other cationic polymers. Fluorescence imaging revealed that PL promoted the intracellular localization of PP without increasing membrane damage, indicating a cooperative mechanism by which PL enhances membrane permeability and PP targets intracellular sites. These findings demonstrate that combining a cell-penetrating peptide with a membrane-active agent is a novel approach to overcome bacterial tolerance. The PP–PL combination effectively suppressed S. mutans growth and biofilm formation through dual action on membranes and EPS metabolism, offering a promising basis for the development of peptide-based preventive agents and biofilm-resistant dental materials. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

21 pages, 1579 KB  
Article
Popcorn-like Particles from an Amino Acid, Poly(L-Cysteine) as Drug Delivery System with Blood-Compatible, Bio-Compatible, Antibacterial, and Antioxidant Properties
by Nurettin Sahiner, Sahin Demirci, Betul Ari, Selin S. Suner, Mehtap Sahiner and Olgun Guven
Micro 2026, 6(1), 6; https://doi.org/10.3390/micro6010006 - 13 Jan 2026
Viewed by 209
Abstract
A facile and single-step synthesis of poly(L-Cysteine) (p(L-Cys)) particles through microemulsion polymerization using tetrakis(hydroxymethyl) phosphonium chloride (THPC) as crosslinker is accomplished for the first time. The L-Cys:THPC ratio in p(L-Cys) particles was calculated as 80:20% (by weight) with elemental analyses, and the generation [...] Read more.
A facile and single-step synthesis of poly(L-Cysteine) (p(L-Cys)) particles through microemulsion polymerization using tetrakis(hydroxymethyl) phosphonium chloride (THPC) as crosslinker is accomplished for the first time. The L-Cys:THPC ratio in p(L-Cys) particles was calculated as 80:20% (by weight) with elemental analyses, and the generation of p(L-Cys) particles was confirmed. SEM imaging revealed a popcorn-like morphology of the p(L-Cys) particles with a 1–20 µm particle size range. The isoelectric point of p(L-Cys) particles was determined at pH 1.15 via zeta potential measurements. The hydrolytic degradation of p(L-Cys) particles was determined as about 85% within 3 h (by weight). The p(L-Cys) particles displayed excellent blood compatibility with a hemolysis % ratio of <2.3% and a blood clotting index of 95% at 1 mg/mL concentration. Moreover, cell compatibility tests up to 50 mg/mL against L929 fibroblast cells exhibited about 90% cell viability for p(L-Cys) particles versus 58% for L-Cys molecule. The antimicrobial efficacy of the L-Cys molecules was notably enhanced in p(L-Cys) particles, exhibiting a 5-fold reduction in minimal bactericidal concentration (MBC) values against E. coli (Gram-negative, ATCC 8739) and a 2-fold reduction against S. aureus (Gram-positive, ATCC 6538). Additionally, the antioxidant capacity of p(L-Cys) particles was retained somewhat, measured as 0.14 ± 0.01 µM versus 2.25 ± 0.03 µM Trolox equivalent/g for L-Cys. Therefore, p(L-Cys) particles are versatile and offer a unique avenue for immense biomedical use. Full article
Show Figures

Figure 1

29 pages, 2741 KB  
Review
Production Techniques for Antibacterial Fabrics and Their Emerging Applications in Wearable Technology
by Azam Ali, Muhammad Zaman Khan, Sana Rasheed and Rimsha Imtiaz
Micro 2026, 6(1), 5; https://doi.org/10.3390/micro6010005 - 13 Jan 2026
Viewed by 446
Abstract
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics [...] Read more.
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics offer effective antimicrobial properties while retaining comfort and functionality by incorporating nanotechnology and advanced materials, such as silver nanoparticles, zinc oxide, titanium dioxide, and graphene. The production techniques for antibacterial textiles range from chemical and physical surface modifications to biological treatments, each tailored to achieve long-lasting antibacterial performance while preserving fabric comfort and breathability. Advanced methods such as nanoparticle embedding, sol–gel coating, electrospinning, and green synthesis approaches have shown significant promise in enhancing antibacterial efficacy and material compatibility. Wearable technology, including fitness trackers, smart clothing, and medical monitoring devices, relies on prolonged skin contact, making the prevention of bacterial colonization essential for user safety and product longevity. Antibacterial fabrics address these concerns by reducing odor, preventing skin irritation, and minimizing the risk of infection, especially in medical applications such as wound dressings and patient monitoring systems. Despite their potential, integrating antibacterial fabrics into wearable technology presents several challenges. This review provides a comprehensive overview of the key antibacterial agents, the production strategies used to fabricate antibacterial textiles, and their emerging applications in wearable technologies. It also highlights the need for interdisciplinary research to overcome current limitations and promote the development of sustainable, safe, and functional antibacterial fabrics for next-generation wearable. Full article
Show Figures

Figure 1

17 pages, 3470 KB  
Article
Tuning the Mechanical and Antibacterial Properties of ZrO2 Thin Films by Varying Deposition Angle and Orientation for Biomedical Applications
by Asma Gzaiel, Khalil Aouadi, Aurélien Besnard, Yoann Pinot, Corinne Nouveau, Faker Bouchoucha, Yahya Agzenai Ben Salem, Amina Guessabi and Boudjemaa Bouaouina
Micro 2026, 6(1), 4; https://doi.org/10.3390/micro6010004 - 8 Jan 2026
Viewed by 770
Abstract
This paper investigates the properties of zirconium oxide thin films deposited on Ti6Al4V and Si substrates via oblique angle deposition, using varying out-of-plane θ (15 to 85°) and in-plane Φ (0 and 180°) substrate orientations. ZrO2 films have garnered significant interest due [...] Read more.
This paper investigates the properties of zirconium oxide thin films deposited on Ti6Al4V and Si substrates via oblique angle deposition, using varying out-of-plane θ (15 to 85°) and in-plane Φ (0 and 180°) substrate orientations. ZrO2 films have garnered significant interest due to their antibacterial properties and mechanical performance. The aim is to engineer surfaces capable of inhibiting bacterial growth while maintaining excellent mechanical integrity. The methodology combines experimental deposition by DC magnetron sputtering with multi-scale simulations using SRIM and SIMTRA. Structural analyses were conducted via X-ray diffraction, while microstructure and surface morphology were examined using scanning electron microscopy and atomic force microscopy. Nanoindentation tests were performed to assess hardness and elastic modulus. Results revealed that increasing the incidence angle α from 7 to 74° significantly affected surface morphology, microstructure, film thickness, and columnar tilt. The hardness and Young’s modulus of the films exceeded those of Ti6Al4V, for incidence angle α between 7 and 50°, but decreased with the increasing incidence angle α. Furthermore, the films exhibited strong antibacterial activity against Gram-positive pathogens (Staphylococcus aureus), particularly at the highest incidence angle α, with inhibition rates exceeding 90%. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

21 pages, 4558 KB  
Article
Rotational Triboelectric Energy Harvester Utilizing Date-Seed Waste as Tribopositive Layer
by Haider Jaafar Chilabi, Luqman Chuah Abdullah, Waleed Al-Ashtari, Azizan As’arry, Hanim Salleh and Eris E. Supeni
Micro 2026, 6(1), 3; https://doi.org/10.3390/micro6010003 - 5 Jan 2026
Viewed by 336
Abstract
The growing need for self-powered Internet of Things networks has raised interest in converting abundant waste into reliable energy harvesters despite long-standing material and technology challenges. As demand for environmentally friendly self-powered IoT devices continues to rise, attention toward green waste as an [...] Read more.
The growing need for self-powered Internet of Things networks has raised interest in converting abundant waste into reliable energy harvesters despite long-standing material and technology challenges. As demand for environmentally friendly self-powered IoT devices continues to rise, attention toward green waste as an eco-friendly energy source has strengthened. However, its direct utilisation in high-performance energy harvesters remains a significant challenge. Driven by the growing need for renewable sources, the triboelectric nanogenerator has emerged as an innovative technology for converting mechanical energy into electricity. In this work, the design, fabrication, and characterisation of a rotating triboelectric energy harvester as a prototype device employing date seed waste as the tribopositive layer are presented. The date seeds particles, measuring 1.2 to 2 mm, were pulverised using a grinder, mixed with epoxy resin, and subsequently applied to the grating-disc structure. The coated surface was machined on a lathe to provide a smooth surface facing. The performance of the prototype was evaluated through a series of experiments to examine the effects of rotational speed, the number of grating-disc structures, the epoxy mixing process, and the prototype’s influence on the primary system, as well as to determine the optimal power output. An increase in rotational speed (RPM) enhanced power generation. Furthermore, increasing the number of gratings and pre-mixing of epoxy with the biomaterial resulted in enhanced output power. Additionally, with 10 gratings, operating at 1500 rpm, and a 24 h pre-mixing method, the harvester achieved maximum voltage and power outputs of 129 volts and 1183 μW at 7 MΩ. Full article
Show Figures

Figure 1

19 pages, 342 KB  
Review
Release of Nano- and Microplastics from Knee Prostheses: A Review of the Emerging Risks and Biomedical Implications
by Irene Méndez-Mesón, Alba Sebastián-Martín, Mónica Grande-Alonso, Rafael Ramírez-Carracedo, Rafael Moreno-Gómez-Toledano and Antonio Peña-Fernández
Micro 2026, 6(1), 2; https://doi.org/10.3390/micro6010002 - 29 Dec 2025
Viewed by 342
Abstract
Contemporary knee prostheses rely predominantly on a metal–polyethylene bearing couple, which—despite substantial advances in material engineering—continues to generate polymeric wear particles over time. While the local biological effects of polyethylene debris, such as inflammation and osteolysis, are well-characterised, their potential systemic implications remain [...] Read more.
Contemporary knee prostheses rely predominantly on a metal–polyethylene bearing couple, which—despite substantial advances in material engineering—continues to generate polymeric wear particles over time. While the local biological effects of polyethylene debris, such as inflammation and osteolysis, are well-characterised, their potential systemic implications remain insufficiently explored. In this review, we synthesise multidisciplinary evidence to evaluate the generation, biological behaviour, and systemic dissemination of polyethylene-derived nano- and microplastics (NMPs) released from knee prostheses. We also contextualise prosthetic wear within the broader toxicological framework of NMP exposure, highlighting translocation pathways, interactions with immune and metabolic systems, and potential multi-organ effects reported in recent experimental and clinical studies. Current findings suggest that prosthetic wear may represent an under-recognised internal source of NMP exposure, with possible implications for long-term patient health. A clearer understanding of the systemic behaviour of prosthetic-derived NMPs is essential to guide future biomonitoring studies, improve prosthetic materials, and support the development of safer, more biocompatible implant designs. Full article
(This article belongs to the Section Microscale Materials Science)
17 pages, 3231 KB  
Article
Spectroscopic Real-Time Monitoring of Plasmonic Gold Nanoparticle Formation in ZnO Thin Films via Pulsed Laser Annealing
by Edgar B. Sousa, N. F. Cunha, Joel Borges and Michael Belsley
Micro 2026, 6(1), 1; https://doi.org/10.3390/micro6010001 - 24 Dec 2025
Viewed by 252
Abstract
We demonstrate that pulsed laser annealing induces plasmonic gold nanoparticles in ZnO thin films, monitored in real-time via pulse-by-pulse spectroscopy. Initially embedded gold nanoparticles (smaller than 5 nm) in sputtered ZnO films were annealed using 532 nm pulses from a Q-switched Nd:YAG laser [...] Read more.
We demonstrate that pulsed laser annealing induces plasmonic gold nanoparticles in ZnO thin films, monitored in real-time via pulse-by-pulse spectroscopy. Initially embedded gold nanoparticles (smaller than 5 nm) in sputtered ZnO films were annealed using 532 nm pulses from a Q-switched Nd:YAG laser while monitoring transmission spectra in situ. A plasmonic resonance dip emerged after ~100 pulses in the 530–550 nm region, progressively deepening with continued exposure. Remarkably, different incident energies converged to a thermodynamically stable optical state centered near 555 nm, indicating robust nanoparticle configurations. After several hundred laser shots, the process stabilized, producing larger nanoparticles (40–200 nm diameter) with significant surface protrusion. SEM analysis confirmed substantial gold nanoparticle growth. Theoretical modeling supports these observations, correlating spectral evolution with particle size and embedding depth. The protruding gold nanoparticles can be functionalized to detect specific biomolecules, offering significant advantages for biosensing applications. This approach offers superior spatial selectivity and real-time process monitoring compared to conventional thermal annealing, with potential for optimizing uniform nanoparticle distributions with pronounced plasmonic resonances for biosensing applications. Full article
(This article belongs to the Section Microscale Physics)
Show Figures

Figure 1

Previous Issue
Back to TopTop