Climbing Colloidal Suspension
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Vibration Experiments
2.3. Rheological Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohshima, H.; Furusawa, K. Electrical Phenomena at Interfaces: Fundamentals: Measurements, and Applications, 2nd ed.; Taylor & Francis: Abingdon, UK, 1998; ISBN 9780824790394. [Google Scholar]
- Wagner, N.J.; Mewis, J. Theory and Applications of Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Groarke, R.; Danilenkoff, C.; Karam, S.; McCarthy, E.; Michel, B.; Mussatto, A.; Sloane, J.; O’ Neill, A.; Raghavendra, R.; Brabazon, D. 316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties. Materials 2020, 13, 5537. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Wu, D.; An, Z. Experimental Study on Matched Particle Size and Elastic Modulus of Preformed Particle Gel for Oil Reservoirs. Gels 2022, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ma, Z.; Tang, L.; Li, Y.; Shao, X.; Tian, Y.; Qian, J.; Fu, J.; Li, D.; Wang, L.; et al. The Effect of Shear Rate on Dynamic Gelation of Phenol Formaldehyde Resin Gel in Porous Media. Gels 2022, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Duran, J. Sands, Powders, and Grains; Springer: New York, NY, USA, 2012; ISBN 9781461267904. [Google Scholar]
- Lodge, A.S. Elastic Liquids; Academic Press: San Diego, CA, USA, 1964; ISBN 9780124548503. [Google Scholar]
- Hunger, M.; Brouwers, H.J.H. Flow Analysis of Water–Powder Mixtures: Application to Specific Surface Area and Shape Factor. Cem. Concr. Compos. 2009, 31, 39–59. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sato, Y.; Sugimoto, T. Effect of pH and Electrolyte Concentration on Sol–Gel State of Semi-Dilute Aqueous Cellulose Nanofiber Suspension: An Interpretation Based on Angle-Dependent DLVO Theory. Colloid Polym. Sci. 2022, 300, 953–960. [Google Scholar] [CrossRef]
- Kawasaki, S.; Kobayashi, M. Affirmation of the Effect of pH on Shake-Gel and Shear Thickening of a Mixed Suspension of Polyethylene Oxide and Silica Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Kobayashi, M. Direct Observation of Relaxation of Aqueous Shake-Gel Consisting of Silica Nanoparticles and Polyethylene Oxide. Polymers 2020, 12, 1141. [Google Scholar] [CrossRef]
- Yamagata, Y.; Miyamoto, K. Gel Formation and Its Relaxation Mechanism of Shear-Induced Aqueous Suspensions Comprised of Bentonite and Heptaethylene Oleyl Ether. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126786. [Google Scholar] [CrossRef]
- Nakamura, H.; Makino, S.; Ishii, M. Effects of Electrostatic Interaction on Rheological Behavior and Microstructure of Concentrated Colloidal Suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126576. [Google Scholar] [CrossRef]
- Hodgson, D.J.M.; Hermes, M.; Blanco, E.; Poon, W.C.K. Granulation and Suspension Rheology: A Unified Treatment. J. Rheol. 2022, 66, 853–858. [Google Scholar] [CrossRef]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Cambridge Monographs on Mechanics: Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 2012; ISBN 9780511608810. [Google Scholar]
- Kobayashi, M.; Adachi, Y.; Ooi, S. On the Steady Shear Viscosity of Coagulated Suspensions. Nihon Reoroji Gakkaishi 2000, 283, 143–144. [Google Scholar] [CrossRef] [Green Version]
- Mari, R.; Seto, R.; Morris, J.F.; Denn, M.M. Discontinuous Shear Thickening in Brownian Suspensions by Dynamic Simulation. Proc. Natl. Acad. Sci. USA 2015, 112, 15326–15330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewis, J.; Wagner, N.J. Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2012; ISBN 9780521515993. [Google Scholar]
- O’Kelly, B.C. Review of Recent Developments and Understanding of Atterberg Limits Determinations. Geotechnics 2021, 1, 59–75. [Google Scholar] [CrossRef]
- Barthès-Biesel, D. Microhydrodynamics and Complex Fluids; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781138072404. [Google Scholar]
- Morris, J.F. Shear Thickening of Concentrated Suspensions: Recent Developments and Relation to Other Phenomena. Annu. Rev. Fluid Mech. 2020, 52, 121–144. [Google Scholar] [CrossRef]
- Brown, E.; Jaeger, H.M. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 2014, 77, 046602. [Google Scholar] [CrossRef] [Green Version]
- McDonald, L. Tune Shear-Thickening Fluid Viscosity with Acoustics. Available online: https://ceramics.org/ceramic-tech-today/basic-science/tune-shear-thickening-fluid-viscosity-with-acoustics (accessed on 31 December 2022).
- Sehgal, P.; Ramaswamy, M.; Cohen, I.; Kirby, B.J. Using Acoustic Perturbations to Dynamically Tune Shear Thickening in Colloidal Suspensions. Phys. Rev. Lett. 2019, 123, 128001. [Google Scholar] [CrossRef] [Green Version]
- Palacci, J. A Soft Active Matter That Can Climb Walls. Science 2022, 377, 710–711. [Google Scholar] [CrossRef]
- Adkins, R.; Kolvin, I.; You, Z.; Witthaus, S.; Marchetti, M.C.; Dogic, Z. Dynamics of Active Liquid Interfaces. Science 2022, 377, 768–772. [Google Scholar] [CrossRef]
- Hou, X.; Peterson, J.D. A study of dense suspensions climbing against gravity. J. Non-Newton. Fluid Mech. 2022, 317, 104868. [Google Scholar] [CrossRef]
- Sehgal, P.; Ramaswamy, M.; Ong, E.Y.X.; Ness, C.; Cohen, I.; Kirby, B.J. Viscosity Metamaterials. arXiv, 2022. [Google Scholar] [CrossRef]
- Kobayashi, M.; Skarba, M.; Galletto, P.; Cakara, D.; Borkovec, M. Effects of Heat Treatment on the Aggregation and Charging of Stöber-Type Silica. J. Colloid Interface Sci. 2005, 292, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Kobayashi, M.; Adachi, Y. Yield Stress of Mixed Suspension of Silica Particles and Lysozymes: The Effect of Zeta Potential and Adsorbed Amount. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123575. [Google Scholar] [CrossRef]
- Huang, Y.; Yamaguchi, A.; Pham, T.D.; Kobayashi, M. Charging and Aggregation Behavior of Silica Particles in the Presence of Lysozymes. Colloid Polym. Sci. 2018, 296, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Ishii, M. Rheological Behavior of Concentrated Monodispersed Colloidal Suspensions. Nihon Reoroji Gakkaishi 2019, 47, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-F.; Luo, Y.; Bai, T.; Brown, S.C.; Wagner, N.J. Microstructure of Continuous Shear Thickening Colloidal Suspensions Determined by Rheo-VSANS and Rheo-USANS. Soft Matter 2022, 18, 4325–4337. [Google Scholar] [CrossRef]
- Kawasaki, T.; Berthier, L. Discontinuous shear thickening in Brownian suspensions. Phys. Rev. E 2018, 98, 012609. [Google Scholar] [CrossRef] [Green Version]
- James, N.M.; Han, E.; de la Cruz, R.A.L.; Jureller, J.; Jaeger, H.M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 2018, 17, 965–970. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, M.; Sugimoto, T.; Sato, S.; Ishibashi, R. Climbing Colloidal Suspension. Liquids 2023, 3, 40-47. https://doi.org/10.3390/liquids3010004
Kobayashi M, Sugimoto T, Sato S, Ishibashi R. Climbing Colloidal Suspension. Liquids. 2023; 3(1):40-47. https://doi.org/10.3390/liquids3010004
Chicago/Turabian StyleKobayashi, Motoyoshi, Takuya Sugimoto, Shunsuke Sato, and Ryouichi Ishibashi. 2023. "Climbing Colloidal Suspension" Liquids 3, no. 1: 40-47. https://doi.org/10.3390/liquids3010004
APA StyleKobayashi, M., Sugimoto, T., Sato, S., & Ishibashi, R. (2023). Climbing Colloidal Suspension. Liquids, 3(1), 40-47. https://doi.org/10.3390/liquids3010004