Experimental Performance Assessment of an Automated Shuttle in a Complex, Public Road Environment
Abstract
1. Introduction
2. Related Work
2.1. Automated Shuttles for PT
2.2. User Acceptance
2.3. Experimental Performance Assessment and Benchmarking of PT
2.4. Benchmarking Automated Operation Against Human Performance
3. Objectives, Questions of Research, and Structure
- How can objective, sensor-based data be used to benchmark automated shuttles against conventional buses?
- How does an automated shuttle perform compared to a conventional bus on a complex, urban track?
- Which characteristics have the largest impact on speed and comfort of the automated shuttle?
4. Performance Criteria
4.1. Speed
4.2. Acceleration
5. Material and Methods
5.1. Track Under Investigation
5.1.1. Segments 1 to 5
5.1.2. Segments 6 to 11
5.1.3. Segments 12 to 16
5.1.4. Segments 17 to 20
5.2. Vehicles
5.3. Data Acquisition
5.4. Data Preparation and Analysis
6. Results
6.1. Comparative Speed Analysis
6.1.1. Segments 1 to 5
6.1.2. Segments 6 to 11
6.1.3. Segments 12 to 16
6.1.4. Segments 17 to 20
6.1.5. Conclusion—Comparative Speed Analysis
- The conventional bus is up to 2.61 times faster than the automated shuttle. The average ratio is 2.02. This is consistent with the total number of Passages (Table 7) for the shuttle and the bus, which indicates a ratio of 2.27.
- Speed histograms indicate a much bigger spread of velocities for the human driver. The standard deviation is typically 2 to 3 times larger compared to the automated shuttle. Furthermore, single-sided distributions rarely occur.
- Traffic flow controls like traffic lights can lead to double-distributions separating runs with and without halt (segment 4) or enforce a significant overlap limiting both vehicles (segment 1).
- Single-sided, asymmetric speed distributions are observed if the automated shuttle regularly reaches its programmed limit (segments 17–20).
6.2. Comparative Acceleration Analysis
6.2.1. Time-Series Analysis
6.2.2. Statistical Analysis
6.2.3. Segments 1 to 5
6.2.4. Segments 6 to 11
6.2.5. Segments 12 to 16
6.2.6. Segments 17 to 20
6.2.7. Analysis of the Form of the Statistical Distributions
6.2.8. Conclusion—Acceleration Analysis
- The concept of the TDA allows the automated analysis of acceleration sensor data. Offsets, including the effect of gravitational acceleration for up- or downhill slopes are successfully removed without the need for manual data conditioning.
- For a sufficient analysis and to conclude on the quality of the ride, the main distribution and existing outliers must be considered. These outliers are related to the subjectively perceived comfort and offer an opportunity to create a quantitative and objective proxy for perceived comfort. Based on the data set for this study, the main distribution of the TDA indicates lower values for the automated shuttle compared to the conventional bus. However, the measurements for automated shuttle contain outliers significantly surpassing the bus. Interviews, which were conducted with passengers of the automated shuttle, indicate that comfort and braking should be improved [25].
- The form of the distribution of the histogram of the TDA is related to the quality of operation of the vehicle.
- Double distributions in the histograms of the TDA indicate multiple modes of operation, like standstill and driving, within one segment.
- A lognormal distribution of the TDA is an indicator for flawless operation without interruptions.
- The analysis of the form of the distribution of the TDA for every segment indicate a lognormal-behavior of the human driver, while a significant number of double distributions and shoulders in the probability density indicate an operation of the shuttle, including a switch-over from automated to manual operation or regular standstill. Thus, double distributions of the TDA can be a valid indicator for reduced performance and reduced comfort and a trigger point to define and initiate corrective actions.
6.3. Impact of Vehicle Type and Size
6.4. Summary of Experimental Results
7. Conclusions and Outlook
- How can objective, sensor-based data be used to benchmark automated shuttles against conventional buses?The measurement of speed and acceleration with reference to each segment allows an assessment of performance and identification of causes. The results can be utilized as a key performance indicator within a Plan–Do–Check–Act cycle.
- How does an automated shuttle perform compared to a conventional bus on a complex, urban track?Based on the results obtained, the performance of a human driver is about a factor of 2 better than the automation in the shuttle bus under investigation. This value can be used as a starting point for planning the changeover from conventional buses to automated shuttles. The observed outliers in the TDA indicate a reduced comfort of the automated shuttle.
- Which characteristics have the largest impact on speed and comfort of the automated shuttle? The measurements of the TDA show a lognormal distribution for the automated shuttle whenever a continuous, smooth operation was achieved. Specifically in segment 3, the shuttle also reached its maximum mean and peak speed and the speed ratio bus/shuttle was 1.81. Thus, an environment with a minimum of random obstacles is best for automation in PT.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; Technical Report; SAE International: Washington, DC, USA, 2021. [Google Scholar]
- Federal Ministry for Digital and Transport. Automatisierung des Hamburger On-Demand-Angebots mit Integration in den ÖPNV—AHOI; Federal Ministry for Digital and Transport: Berlin, Germany, 2022. [Google Scholar]
- Federal Ministry for Digital and Transport. Integration von drei Autonomen Linien-BUSsen in der Region Hannover—ALBUS; Federal Ministry for Digital and Transport: Berlin, Germany, 2023. [Google Scholar]
- Federal Ministry for Digital and Transport. Digitale Testfelder für das automatisierte und vernetzte Fahren im Realverkehr in Deutschland (Stand: September 2020); Federal Ministry for Digital and Transport: Berlin, Germany, 2020. [Google Scholar]
- IWT Wirtschaft und Technik GmbH. Testfeld Friedrichshafen; IWT Wirtschaft und Technik GmbH: Friedrichshafen, Germany, 2022. [Google Scholar]
- Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS). Abschlussbericht RABus (Phase 1); Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS): Stuttgart, Germany, 2025. [Google Scholar]
- Mitteldeutscher Verkehrsverbund GmbH (MDV). FLASH Bus; Mitteldeutscher Verkehrsverbund GmbH (MDV): Leipzig, Germany, 2022. [Google Scholar]
- Free and Hanseatic City of Bremen. A.R.T. Forum. 2022. Available online: https://www.art-forum.eu (accessed on 4 November 2025).
- Free and Hanseatic City of Bremen. Machbarkeitsstudie zum hochautomatisierten Fahren im öffentlichen Straßenpersonennahverkehr (ÖPNV) in der Hansestadt Bremen Ergebnisbericht im Rahmen des EU-Interreg Projektes Automated Road Transport-Forum (A.R.T-Forum); Technical Report; Free and Hanseatic City of Bremen: Bremen, Germany, 2022. [Google Scholar]
- Lanng, D.; Villadsen, H.; Hougaard, I.; Frejlev, C.; Borg, S. A Qualitative Study of a Trial with Driverless Shuttles in Aalborg East—Meeting of City, People and Technology: Aalborg University’s Study of Aalborg Municipality’s Trial of Driverless Shuttles in Aalborg East, 2017–2022; Skriftserie: Arkitektur & Design (A&D Files), Department of Architecture, Design & Media Technology, Aalborg University: Aalborg, Denmark, 2022. [Google Scholar]
- Metropolia University of Applied Sciences Finnland. Sohjoa Baltic Project. 2022. Available online: https://www.sohjoabaltic.eu (accessed on 4 November 2025).
- Makinen, S.; Kantala, T.; Haapamaki, T.; Olin, J.; Kyyro, M.A. Sohjoa Baltic—The Roadmap to Automated Electric Shuttles in Public Transport—User Experience and Impact on Public Transport; Technical Report; Metropolia University of Applied Sciences: Helsinki, Finland, 2020. [Google Scholar]
- Bellone, M.; Rutanen, E.; Ismailogullari, A. Sohjoa Baltic—The Roadmap to Automated Electric Shuttles in Public Transport—Technology and Safety Requirements; Technical Report; Metropolia University of Applied Sciences: Helsinki, Finland, 2020. [Google Scholar]
- Riegel, B. SFF BERNMOBIL—Schlussbericht Dezember 2021 Pilotprojekt Selbstfahrendes Fahrzeug im ÖV bei BERNMOBIL; Technical report; BERNMOBIL, Städtische Verkehrsbetriebe Bern: Bern, Switzerland, 2021. [Google Scholar]
- Forum Virium Helsinki. Fabulos. 2022. Available online: https://fabulos.eu (accessed on 4 November 2025).
- Forum Virium Helsinki. Fabulos Passenger Survey Results. 2022. Available online: https://fabulos.eu/passenger-survey-results/ (accessed on 4 November 2025).
- The Avenue Consortium. Avenue. 2022. Available online: https://h2020-avenue.eu (accessed on 4 November 2025).
- Antonialli, F. Autonomous shuttles for collective transport: A worldwide benchmark. Int. J. Automot. Technol. Manag. 2021, 21, 5–28. [Google Scholar] [CrossRef]
- Bonnardel, S.M. Robomobility for collective transport: A prospective user centric view. Int. J. Automot. Technol. Manag. 2021, 21, 99–120. [Google Scholar] [CrossRef]
- Marquordt, C. Stavanger in Norway: Autonomous Midibus Karsan e-ATAK Starts Service. 2022. Available online: https://www.urban-transport-magazine.com/en/stavanger-in-norway-autonomous-midibus-karsan-e-atak-starts-service/ (accessed on 4 November 2025).
- Government of South Australia. Murray Back on the Road and Open to the Public; Government of South Australia: Adelaide, SA, Australia, 2022. [Google Scholar]
- Klauer, S.; Hong, Y.; Mollenhauer, M.; Vilela, J.P.T. Infrastructure-Based Performance Evaluation for Low-Speed Automated Vehicle (LSAV). Safety 2023, 9, 30. [Google Scholar] [CrossRef]
- Government of South Australia. South Australia’s Future Mobility Lab—Innovation in Transport; Government of South Australia: Adelaide, SA, Australia, 2022. [Google Scholar]
- Matute, J.; Searcy, S.; Karimoddini, A. Aggie Auto Shuttles: Technical Insights from the Public Road Demonstration. Transp. Eng. 2025, 20, 100335. [Google Scholar] [CrossRef]
- Gertz, C. Endbericht des Projektes TaBuLa; Technical Report; TUHH Universitätsbibliothek: Hamburg, Germany, 2021. [Google Scholar] [CrossRef]
- Bellem, H.; Thiel, B.; Schrauf, M.; Krems, J.F. Comfort in automated driving: An analysis of preferences for different automated driving styles and their dependence on personality traits. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 90–100. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Lai, Y.C. Exploring autonomous bus users’ intention: Evidence from positive and negative effects. Transp. Policy 2024, 146, 91–101. [Google Scholar] [CrossRef]
- Klinkhardt, C.; Kandler, K.; Kostorz, N.; Heilig, M.; Kagerbauer, M.; Vortisch, P. Integrating Autonomous Busses as Door-to-Door and First-/Last-Mile Service into Public Transport: Findings from a Stated Choice Experiment. Transp. Res. Rec. 2024, 2678, 605–619. [Google Scholar] [CrossRef]
- Cai, L.; Yuen, K.F.; Wang, X. Explore public acceptance of autonomous buses: An integrated model of UTAUT, TTF and trust. Travel Behav. Soc. 2023, 31, 120–130. [Google Scholar] [CrossRef]
- Rahim, A.N.; Fonzone, A.; Fountas, G.; Downey, L. On the Attitudes Toward Automation in Determining the Intention to Use Automated Buses in Scotland. Transp. Res. Rec. 2023, 2677, 384–396. [Google Scholar] [CrossRef]
- Rong, R.; Liu, L.; Jia, N.; Ma, S. Impact analysis of actual traveling performance on bus passenger’s perception and satisfaction. Transp. Res. Part A Policy Pract. 2022, 160, 80–100. [Google Scholar] [CrossRef]
- Mouratidis, K.; Serrano, C.V. Autonomous buses: Intentions to use, passenger experiences, and suggestions for improvement. Transp. Res. Part F Traffic Psychol. Behav. 2021, 76, 321–335. [Google Scholar] [CrossRef]
- Chee, P.N.E.; Susilo, Y.O.; Wong, Y.D. Determinants of intention-to-use first-/last-mile automated bus service. Transp. Res. Part A Policy Pract. 2020, 139, 350–375. [Google Scholar] [CrossRef]
- Chinen, K.; Sun, Y.; Matsumoto, M.; Chun, Y.-Y. Towards a Sustainable Society through Emerging Mobility Services: A Case of Autonomous Buses. Sustainability 2020, 12, 9170. [Google Scholar] [CrossRef]
- Wintersberger, P.; Frison, A.K.; Thang, I.; Riener, A. Mensch oder Maschine? Direktvergleich von automatisiert und manuell gesteuertem Nahverkehr. In Autonome Shuttlebusse im ÖPNV: Analysen und Bewertungen zum Fallbeispiel Bad Birnbach aus Technischer, Gesellschaftlicher und Planerischer Sicht; Springer: Berlin, Germany, 2020; pp. 95–113. [Google Scholar] [CrossRef]
- Bae, I.; Moon, J.; Seo, J. Toward a Comfortable Driving Experience for a Self-Driving Shuttle Bus. Electronics 2019, 8, 943. [Google Scholar] [CrossRef]
- Madigan, R.; Louw, T.; Dziennus, M.; Graindorge, T.; Ortega, E.; Graindorge, M.; Merat, N. Acceptance of Automated Road Transport Systems (ARTS): An Adaptation of the UTAUT Model. Transp. Res. Procedia 2016, 14, 2217–2226. [Google Scholar] [CrossRef]
- Martin, D.; Litwhiler, D.H. An Investigation Of Acceleration And Jerk Profiles Of Public Transportation Vehicles. In Proceedings of the ASEE Annual Conference and Exposition, American Society for Engineering Education, Pittsburgh, PA, USA, 22–25 June 2008; p. 1330. [Google Scholar]
- Chawuthai, R.; Sumalee, A.; Threepak, T. GPS Data Analytics for the Assessment of Public City Bus Transportation Service Quality in Bangkok. Sustainability 2023, 15, 5618. [Google Scholar] [CrossRef]
- Nesmachnow, S.; Massobrio, R.; Guridi, S.; Olmedo, S.; Tchernykh, A. Big Data Analysis for Travel Time Characterization in Public Transportation Systems. Sustainability 2023, 15, 14561. [Google Scholar] [CrossRef]
- Zhang, W.; Jenelius, E.; Badia, H. Efficiency of Semi-Autonomous and Fully Autonomous Bus Services in Trunk-and-Branches Networks. J. Adv. Transp. 2019, 2019, 7648735. [Google Scholar] [CrossRef]
- Erhardt, G.D.; Lock, O.; Arcaute, E.; Batty, M. A Big Data Mashing Tool for Measuring Transit System Performance. In Seeing Cities Through Big Data: Research, Methods and Applications in Urban Informatics; Springer International Publishing: Cham, Switzerland, 2017; pp. 257–278. [Google Scholar] [CrossRef]
- Stewart, C.; Diab, E.; Bertini, R.; El-Geneidy, A. Perspectives on Transit: Potential Benefits of Visualizing Transit Data. Transp. Res. Rec. 2016, 2544, 90–101. [Google Scholar] [CrossRef]
- Li, R.; Kido, A.; Wang, S. Evaluation Index Development for Intelligent Transportation System in Smart Community Based on Big Data. Adv. Mech. Eng. 2015, 7, 541651. [Google Scholar] [CrossRef]
- Schlenoff, C.I.; Evans, J.M.; Barbera, A.J.; Albus, J.S.; Messina, E.R.; Balakirsky, S.B. Achieving intelligent performance in autonomous on-road driving. In Proceedings of the SPIE, Mobile Robots XVII, Optics East, Philadelphia, PA, USA, 29 December 2004; pp. 116–127. [Google Scholar] [CrossRef][Green Version]
- Kegelman, J.C.; Harbott, L.K.; Gerdes, J.C. Insights into vehicle trajectories at the handling limits: Analysing open data from race car drivers. Veh. Syst. Dyn. 2017, 55, 191–207. [Google Scholar] [CrossRef]
- Kegelman, J.C. Learning from Professional Race Car Drivers to Make Automated Vehicles Safer. Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA, USA, December 2018. [Google Scholar]
- Hermansdorfer, L.; Betz, J.; Lienkamp, M. Benchmarking of a software stack for autonomous racing against a professional human race driver. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, Q.; Xing, Y.; Wang, J.; Fang, Z.; Liu, Y.; Yin, G. Interaction-Aware and Driving Style-Aware Trajectory Prediction for Heterogeneous Vehicles in Mixed Traffic Environment. IEEE Trans. Intell. Transp. Syst. 2025, 26, 10710–10724. [Google Scholar] [CrossRef]
- Interlink Consulting International. Zusammenfassung Bestandsanalyse—Mobilität 2035—Strategie des Kreises Herzogtum Lauenburg; Interlink GmbH: Berlin, Germany, 2022. [Google Scholar]
- OpenStreetMap Contributors. Map data from OpenStreetMap. 2022. Available online: https://www.openstreetmap.org (accessed on 4 November 2025).
- Navya SA. Navya Self-Driving Made Real. 2022. Available online: https://www.navya.tech (accessed on 4 November 2025).
- Wikipedia Contributors. MAN Lion’s City. 2022. Available online: https://en.wikipedia.org/w/index.php?title=MAN_Lion’s_City&oldid=1318893443 (accessed on 4 November 2025).
- Parizet, E.; Brocard, J.; Piquet, B. Influence of noise and vibration to comfort in diesel engine cars running at idle. Acta Acust. United Acust. 2004, 90, 987–993. [Google Scholar]
- Dodge, Y. Lognormal Distribution. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 321–322. [Google Scholar] [CrossRef]
- Yan, Y.; Han, D.; Zhang, Q.; Wang, J.; Pi, D.; Chu, D.; Yin, G. Event-Triggered Personalized Driving Based on Passenger’s Subjective Risk Evaluation. IEEE Trans. Intell. Transp. Syst. 2025, 26, 1982–1998. [Google Scholar] [CrossRef]
- Vass, S.; Donà, R.; Mattas, K.; Morandin, G.; Toth, B.; Áron Heé, M.; Galassi, M.C.; Ciuffo, B. Are low-speed automated vehicles ready for deployment? Implications on safety and urban traffic. Transp. Res. Part C Emerg. Technol. 2025, 181, 105393. [Google Scholar] [CrossRef]




















| Name | Project Goal | Vehicle Type | Road Type | Characteristics | Reference |
|---|---|---|---|---|---|
| AHOI (Hamburg, Germany) | integration | midsize bus | city streets | demand-controlled PT, mixed operation, control center | [2] |
| ALBUS (Hannover, Germany) | operation, integration | midsize bus (∼40 seats) | city streets | SAE level 4, rural areas | [3] |
| Testfield Friedrichshafen (Germany) | operation, integration | shuttle (10 seats) | city streets, country and back roads | V2x, urban development concept (ISEK) | [4,5,6] |
| FLASH (Nordsachsen, Germany) | operation | shuttle (20 seats) | city and back roads | speeds up to 70 km/h | [7] |
| A.R.T.Forum (14 partners in 6 countries) | operation | shuttle (11 seats) | city streets | impact of automated PT on the road transport system and city life | [8,9,10] |
| Sohjoa Baltic (Finland) | operation | shuttle (11 seats) | city streets | various scales, remote operation | [11,12,13] |
| Linie 23 (Bern, Switzerland) | operation, integration | shuttle (9 seats) | city streets | on-demand, control center | [14] |
| FABULOS (Helsinki, Talinn, Gjesdal, Helmond, Lamia) | operation | shuttle (10 seats) | city streets | segregated lanes, speeds up to 40 km/h, on-demand service, remote control | [15,16] |
| AVENUE (Geneva, Lyon, Copenhagen, Luxembourg) | operation, integration | shuttle (11 seats) | city streets | large areas with low demand | [17,18,19] |
| Automated MIDI-bus (Stavanger, Norway) | operation | midsize bus (∼40 seats) | city streets | goal: SAE level 4, speeds up to 40 km/h | [20] |
| Murray (Australia) | operation | shuttles (10–15 seats) | city streets | with weak PT and strong tourism | [21] |
| Fairfax, Virginia (USA) | operation | shuttle (6 seats) | city streets | level 3 with significant complexity and higher traffic volumes | [22] |
| Elizabeth Vale (Australia) | integration | shuttle (6 seats) | city streets | control center | [23] |
| Aggie Auto Shuttles (Grensboro, USA) | operation | shuttle (6 seats) | urban and suburban | handover study | [24] |
| this study | operation | shuttle (11 seats) | city streets, country roads, slopes | complex environment, V2x | [25] |
| Reference | Year | Vehicle Type | Information Sources | Perception |
|---|---|---|---|---|
| [6] | 2024 | automated shuttle | questionnaires | reliability, speed, safety, security, cost |
| [27] | 2024 | automated shuttle | questionnaires | compatibility, relative advantage, safety, security, cost, time, frequency |
| [28] | 2024 | automated shuttle | questionnaires | accessiblity, time, cost, frequency |
| [29] | 2023 | automated shuttle | questionnaires | performance, effort, social, risk |
| [30] | 2023 | automated shuttle | questionnaires | usefulness, ease of use, trust, safety, security |
| [10] | 2022 | automated shuttle | field observations, interviews, speed, waiting time, safety, emergency stopping | |
| [31] | 2022 | conventional bus | questionnaires, GNSS (position, speed, direction) | travel time, speed, turning, waiting time, stopping, dwell time |
| [19] | 2021 | automated shuttle | interviews, literature review, personas | safety, comfort, reliability, routes, timetables, speed |
| [25] | 2021 | automated shuttle | questionnaires, interviews | safety, traffic obstruction |
| [32] | 2021 | automated shuttle | questionnaires, interviews | safety, speed, (abrupt) braking, frequency |
| [14] | 2021 | automated shuttle | interviews, manual documentation of emergency stops | speed, predictability, usefulness, environmental friendliness |
| [12] | 2020 | automated shuttle | interviews, questionnaires | smoothness, speed, braking, security, safety, comfort, travel time, accessibility, service coverage, cost |
| [16] | 2020 | automated shuttle | interviews, questionnaires | braking, speed, (unplanned) stops, accessibility, comfort |
| [33] | 2020 | automated shuttle | questionnaires | frequency, safety, comfort, time, cost |
| [34] | 2020 | automated shuttle | questionnaires | (abrupt) stops, safety, efficiency |
| [35] | 2020 | automated shuttle | questionnaires | safety, trust, time, user experience |
| [36] | 2019 | automated shuttle | calculations, simulations (acceleration, jerk) | - |
| [26] | 2018 | automated vehicle | physical simulator (acceleration, jerk) | comfort, safety |
| [37] | 2016 | automated shuttle | questionnaires | performance, effort, social, time, efficiency, speed, convenience, cost |
| [38] | 2008 | subway vehicle | in-vehicle measurement (acceleration, jerk) | - |
| Reference | Year | Vehicle Type | Original Data | Spacial Analysis | Statistic Asessment |
|---|---|---|---|---|---|
| [39] | 2023 | conventional bus | GNSS | route matching, route completion, on-path, on-schedule | - |
| [40] | 2023 | conventional bus | GNSS | bus-stop-based | travel times |
| [22] | 2023 | automated shuttle | vehicle- and infrastructure-based | infrastructure-based | events, incidents |
| [41] | 2019 | automated shuttle | none, model-based assessment | - | - |
| [42] | 2017 | conventional bus | AVL, APC | route-based, bus-stop-based | transit performance indicators |
| [43] | 2016 | conventional bus | AVL, APC | localization-based visualization | - |
| [44] | 2015 | conventional bus | AVL | bus-stop-based | punctuality |
| this study | 2025 | automated shuttle compared to conventional bus | GNSS, IMU | track-structurebased, average segment length m | speed and acceleration distribution per segment |
| Segment | Start Shuttle [m] | End Shuttle [m] | Length [m] | Flow Controls | Pavement | Slope | Remarks |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 53.8 | 53.8 | TL | asphalt | - | |
| 2 | 53.8 | 120.8 | 67.0 | - | asphalt | - | main road |
| 3 | 120.8 | 193.6 | 72.8 | - | asphalt | - | main road |
| 4 | 193.6 | 286.0 | 92.4 | TL | asphalt | - | main road |
| 5 | 286.0 | 360.1 | 74.1 | - | asphalt | - | main road, speed limit 30 km/h |
| 6 | 360.1 | 427.3 | 67.2 | - | cobblestone, asphalt | down | - |
| 7 | 427.3 | 487.7 | 60.4 | SB | cobblestone, asphalt | down | - |
| 8 | 487.7 | 557.9 | 70.2 | - | asphalt | down | dense treetops |
| 9 | 557.9 | 611.8 | 53.9 | SB | cobblestone, asphalt | down | dense treetops |
| 10 | 611.8 | 681.2 | 69.4 | SB | cobblestone, asphalt | down | dense treetops |
| 11 | 681.2 | 754.6 | 73.4 | S, B | asphalt | down | - |
| 12 | 754.6 | 855.9 | 101.3 | SB | cobblestone, asphalt | down | - |
| 13 | 855.9 | 951.2 | S: 95.3 | B | cobblestone | - | sep. paths |
| B: 125.3 | shuttle/bus | ||||||
| 14 | 951.2 | 1030.6 | 79.4 | S, B | cobblestone | - | - |
| 15 | 1030.6 | 1106.2 | 75.6 | - | cobblestone | - | - |
| 16 | 1106.2 | 1190.1 | 83.9 | S | cobblestone | - | - |
| 17 | 1190.1 | 1269.3 | 79.2 | S, B | cobblestone | Up | - |
| 18 | 1269.3 | 1332.0 | 62.7 | bollard | cobblestone | - | two-way road, width ≤ 5 m |
| 19 | 1332.0 | 1418.1 | 86.1 | - | cobblestone | - | two-way road, width ≤ m, vegetation |
| 20 | 1418.1 | 1503.6 | 85.5 | - | cobblestone | - | two-way road, width ≤ 5 m |
| Parameter | Automated Shuttle | Conventional Bus |
|---|---|---|
| Type | NAVYA evo | MAN A66 |
| Drive Type | 4-wheel, electric | 2-wheel, diesel |
| Max. Speed | 25 km/h | 96 km/h |
| Speed Limit | 18 km/h | - |
| Peak Engine Power | 34 kW | 184 kW |
| Number of Passengers (seated + standing) | 11 + 0 | 22 + 39 |
| Data Source | Quantity | Unit/Format | Measurement Frequency | Measurement Range | Measurement Resolution |
|---|---|---|---|---|---|
| GNSS | UTC Time | [HH:MM:SS] | 1 Hz | 24 h | 1 s |
| GNSS | Latitude | deg | 1 Hz | deg | 0.000001 deg |
| GNSS | Longitude | deg | 1 Hz | deg | 0.000001 deg |
| GNSS | Number of Satellites in View | - | 1 Hz | 99 | 1 |
| GNSS | Speed | km/h | 1 Hz | - | km/h |
| IMU | Acceleration x | g | 50 Hz | g | 0.000244 g |
| IMU | Acceleration y | g | 50 Hz | g | 0.000244 g |
| IMU | Acceleration z | g | 50 Hz | g | 0.000244 g |
| Automated Shuttle | Conventional Bus | |
|---|---|---|
| Time Frame of Data Collection | November 2020–December 2020 | December 2020–April 2021 |
| Total Number of Data Points | 5,639,742 | 6,999,327 |
| Total Time analyzed | h | h |
| Total Number of Passages | 123 | 347 |
| Segment | Automated Shuttle, 95% Confidence | Conventional Bus, 95% Confidence | ||||
|---|---|---|---|---|---|---|
[m/s] | [m/s] | [m/s] | [m/s] | [m/s] | [m/s] | |
| 1 | 1.07 | 1.19 | 1.30 | 1.77 | 1.92 | 2.07 |
| 2 | 3.79 | 3.87 | 3.96 | 6.16 | 6.28 | 6.39 |
| 3 | 4.23 | 4.34 | 4.44 | 7.73 | 7.85 | 7.98 |
| 4 | 3.68 | 3.85 | 4.01 | 6.84 | 7.04 | 7.24 |
| 5 | 4.19 | 4.26 | 4.32 | 8.07 | 8.17 | 8.27 |
| 6 | 2.37 | 2.44 | 2.51 | 5.33 | 5.44 | 5.54 |
| 7 | 2.63 | 2.69 | 2.76 | 4.67 | 4.74 | 4.81 |
| 8 | 2.00 | 2.05 | 2.11 | 4.85 | 4.92 | 4.99 |
| 9 | 2.31 | 2.40 | 2.49 | 4.77 | 4.85 | 4.93 |
| 10 | 2.25 | 2.35 | 2.44 | 5.13 | 5.21 | 5.30 |
| 11 | 1.97 | 2.08 | 2.19 | 4.99 | 5.08 | 5.16 |
| 12 | 2.06 | 2.14 | 2.22 | 4.51 | 4.59 | 4.67 |
| 13 | 1.47 | 1.53 | 1.58 | 2.22 | 2.29 | 2.36 |
| 14 | 1.57 | 1.71 | 1.84 | 3.82 | 3.91 | 4.01 |
| 15 | 2.67 | 2.76 | 2.84 | 4.22 | 4.32 | 4.42 |
| 16 | 2.03 | 2.13 | 2.23 | 3.52 | 3.60 | 3.67 |
| 17 | 1.47 | 1.55 | 1.64 | 3.37 | 3.47 | 3.58 |
| 18 | 1.19 | 1.22 | 1.26 | 2.71 | 2.77 | 2.83 |
| 19 | 1.10 | 1.19 | 1.27 | 3.02 | 3.10 | 3.17 |
| 20 | 1.56 | 1.66 | 1.75 | 3.59 | 3.66 | 3.75 |
| Segment | Automated Shuttle | Conventional Bus | Ratio of Mean Speeds Bus/Shuttle | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
[m/s] | [m/s] | [m/s] | [m/s] | [m/s] | [m/s] | [m/s] | [m/s] | [m/s] | ||
| 1 | 0.40 | 2.58 | 1.19 | 2.73 | 0.64 | 0.65 | 6.48 | 1.92 | 1.43 | 1.61 |
| 2 | 2.15 | 4.53 | 3.87 | 4.47 | 0.48 | 2.31 | 9.52 | 6.28 | 1.12 | 1.62 |
| 3 | 1.74 | 4.97 | 4.34 | 4.77 | 0.57 | 2.17 | 11.97 | 7.85 | 1.18 | 1.81 |
| 4 | 1.30 | 4.84 | 3.85 | 4.72 | 0.90 | 2.22 | 11.32 | 7.04 | 1.88 | 1.83 |
| 5 | 2.22 | 4.88 | 4.26 | 4.78 | 0.36 | 4.52 | 11.99 | 8.17 | 0.95 | 1.92 |
| 6 | 0.45 | 4.13 | 2.44 | 2.87 | 0.41 | 0.84 | 8.84 | 5.44 | 0.96 | 2.23 |
| 7 | 0.67 | 3.72 | 2.69 | 3.00 | 0.37 | 3.11 | 6.77 | 4.74 | 0.64 | 1.76 |
| 8 | 1.46 | 3.68 | 2.05 | 2.36 | 0.30 | 1.76 | 6.80 | 4.92 | 0.70 | 2.40 |
| 9 | 1.97 | 4.94 | 2.40 | 2.30 | 0.50 | 2.14 | 7.51 | 4.85 | 0.73 | 2.02 |
| 10 | 1.92 | 4.68 | 2.35 | 2.30 | 0.55 | 1.52 | 7.32 | 5.21 | 0.82 | 2.22 |
| 11 | 0.58 | 4.26 | 2.08 | 1.99 | 0.62 | 0.59 | 7.43 | 5.08 | 0.80 | 2.44 |
| 12 | 0.68 | 3.76 | 2.14 | 2.27 | 0.44 | 0.53 | 6.93 | 4.59 | 0.75 | 2.14 |
| 13 | 0.34 | 3.18 | 1.53 | 2.15 | 0.29 | 0.55 | 4.64 | 2.29 | 0.89 | 1.97 |
| 14 | 0.03 | 4.05 | 1.71 | 2.15 | 0.76 | 0.86 | 6.16 | 3.91 | 0.91 | 2.29 |
| 15 | 0.55 | 4.75 | 2.76 | 3.00 | 0.47 | 1.34 | 7.99 | 4.32 | 0.91 | 1.57 |
| 16 | 0.24 | 3.97 | 2.13 | 2.82 | 0.56 | 1.02 | 6.09 | 3.60 | 0.70 | 1.69 |
| 17 | 0.31 | 4.16 | 1.55 | 1.74 | 0.48 | 0.52 | 5.53 | 3.47 | 0.99 | 2.24 |
| 18 | 0.31 | 1.94 | 1.22 | 1.47 | 0.20 | 0.26 | 4.24 | 2.77 | 0.59 | 2.27 |
| 19 | 0.57 | 4.02 | 1.19 | 1.33 | 0.46 | 0.22 | 5.30 | 3.10 | 0.72 | 2.61 |
| 20 | 0.74 | 4.85 | 1.66 | 1.78 | 0.54 | 0.46 | 6.60 | 3.66 | 0.93 | 2.20 |
| Automated Electric Shuttle | Conventional Diesel Bus | |
|---|---|---|
| longitudinal [g] | 0.04 | 0.1 |
| lateral [g] | 0.03 | 0.08 |
| vertical [g] | 0.02 | 0.06 |
| Longitudinal [g] | Lateral [g] | |
|---|---|---|
| comfort | −0.09 ... 0.09 | −0.09 ... 0.09 |
| normal | −0.2 ... 0.147 | −0.4 ... 0.4 |
| aggressive | −0.508 .... 0.307 | −0.56 ... 0.56 |
| extremely aggressive | −0.76 ... 0.76 | −0.76 ... 0.76 |
| airbag deployment | −0.76 ... −0.56 | - |
| Segment | Automated Shuttle, 95% Confidence | Conventional Bus, 95% Confidence | ||||
|---|---|---|---|---|---|---|
[g] | [g] | [g] | [g] | [g] | [g] | |
| 1 | 0.037 | 0.040 | 0.042 | 0.088 | 0.091 | 0.093 |
| 2 | 0.044 | 0.045 | 0.046 | 0.068 | 0.069 | 0.070 |
| 3 | 0.042 | 0.044 | 0.045 | 0.056 | 0.057 | 0.058 |
| 4 | 0.047 | 0.050 | 0.051 | 0.077 | 0.079 | 0.080 |
| 5 | 0.044 | 0.046 | 0.047 | 0.057 | 0.059 | 0.059 |
| 6 | 0.077 | 0.077 | 0.081 | 0.144 | 0.149 | 0.151 |
| 7 | 0.071 | 0.073 | 0.074 | 0.153 | 0.156 | 0.158 |
| 8 | 0.039 | 0.041 | 0.042 | 0.092 | 0.094 | 0.095 |
| 9 | 0.078 | 0.082 | 0.084 | 0.194 | 0.198 | 0.201 |
| 10 | 0.041 | 0.044 | 0.045 | 0.107 | 0.109 | 0.111 |
| 11 | 0.044 | 0.047 | 0.048 | 0.103 | 0.105 | 0.107 |
| 12 | 0.084 | 0.088 | 0.090 | 0.183 | 0.187 | 0.190 |
| 13 | 0.088 | 0.092 | 0.095 | 0.177 | 0.182 | 0.186 |
| 14 | 0.080 | 0.087 | 0.092 | 0.211 | 0.217 | 0.221 |
| 15 | 0.136 | 0.141 | 0.145 | 0.306 | 0.317 | 0.326 |
| 16 | 0.120 | 0.126 | 0.130 | 0.280 | 0.289 | 0.296 |
| 17 | 0.075 | 0.078 | 0.081 | 0.174 | 0.179 | 0.183 |
| 18 | 0.062 | 0.064 | 0.066 | 0.149 | 0.151 | 0.154 |
| 19 | 0.059 | 0.063 | 0.065 | 0.157 | 0.161 | 0.165 |
| 20 | 0.068 | 0.071 | 0.074 | 0.159 | 0.164 | 0.168 |
| Segment | Automated Shuttle | Conventional Bus | Ratio of Bus/Shuttle | Ratio of Bus/Shuttle | ||||
|---|---|---|---|---|---|---|---|---|
[g] | [g] | [g] | [g] | [g] | [g] | |||
| 1 | 0.04 | 0.01 | 0.81 | 0.09 | 0.05 | 0.64 | 2.35 | 0.79 |
| 2 | 0.05 | 0.03 | 0.85 | 0.07 | 0.05 | 0.55 | 1.40 | 0.65 |
| 3 | 0.04 | 0.03 | 0.77 | 0.06 | 0.05 | 0.55 | 1.50 | 0.71 |
| 4 | 0.05 | 0.04 | 0.87 | 0.08 | 0.05 | 0.74 | 1.60 | 0.85 |
| 5 | 0.05 | 0.04 | 0.89 | 0.06 | 0.05 | 0.31 | 1.20 | 0.35 |
| 6 | 0.08 | 0.04 | 0.89 | 0.15 | 0.07 | 1.49 | 1.88 | 1.67 |
| 7 | 0.07 | 0.03 | 1.08 | 0.16 | 0.06 | 1.44 | 2.29 | 1.33 |
| 8 | 0.04 | 0.02 | 1.26 | 0.09 | 0.05 | 1.26 | 2.25 | 1.00 |
| 9 | 0.08 | 0.07 | 0.88 | 0.20 | 0.14 | 1.49 | 2.50 | 1.69 |
| 10 | 0.04 | 0.02 | 0.89 | 0.11 | 0.05 | 1.44 | 2.75 | 1.62 |
| 11 | 0.05 | 0.02 | 0.85 | 0.11 | 0.05 | 1.26 | 2.20 | 1.48 |
| 12 | 0.09 | 0.07 | 0.68 | 0.19 | 0.11 | 1.49 | 2.11 | 2.19 |
| 13 | 0.09 | 0.07 | 0.89 | 0.18 | 0.07 | 1.27 | 2.00 | 1.43 |
| 14 | 0.09 | 0.01 | 0.72 | 0.22 | 0.15 | 1.49 | 2.44 | 2.07 |
| 15 | 0.14 | 0.01 | 1.29 | 0.32 | 0.21 | 1.45 | 2.29 | 1.12 |
| 16 | 0.13 | 0.01 | 1.33 | 0.29 | 0.17 | 1.49 | 2.42 | 1.12 |
| 17 | 0.08 | 0.06 | 0.63 | 0.18 | 0.07 | 1.49 | 2.25 | 2.37 |
| 18 | 0.06 | 0.05 | 0.77 | 0.15 | 0.10 | 1.29 | 2.50 | 1.68 |
| 19 | 0.06 | 0.05 | 0.73 | 0.16 | 0.10 | 1.49 | 2.67 | 2.04 |
| 20 | 0.07 | 0.06 | 0.76 | 0.16 | 0.11 | 1.44 | 2.28 | 1.90 |
| Segment | Automated Shuttle | Conventional Bus | Comment |
|---|---|---|---|
| 1 | one-sided, several shoulders | lognormal, slight shoulder | TL |
| 2 | lognormal | lognormal | undisturbed operation |
| 3 | lognormal | lognormal | undisturbed operation |
| 4 | significant contribution at 0.0 g | lognormal | TL |
| 5 | lognormal | lognormal | undisturbed operation |
| 6 | lognormal, shoulder | lognormal | leaving main road, mixed pavement |
| 7 | double distribution | lognormal | speed-bump |
| 8 | steep lognormal | lognormal | undisturbed operation |
| 9 | double distributions | broad, lognormal | speed-bump |
| 10 | steep lognormal | lognormal | speed-bump |
| 11 | steep | lognormal | stop (S, B) |
| 12 | double distribution | lognormal | speed-bump, parking vehicles |
| 13 | double distribution | double distribution | stop (B), parking vehciles |
| 14 | very steep contribution at 0.0 g | very broad distribution | extended standstill (S), stop (S, B) |
| 15 | double distribution | very broad distribution | parking vehicles |
| 16 | double distribution | broad, lognormal | stop (S) |
| 17 | double distribution | double distribution | stop (S, B) |
| 18 | lognormal | lognormal | tight road, automated bollard |
| 19 | lognormal | lognormal | tight road |
| 20 | lognormal, shoulder | lognormal | tight road |
| Related Performance Metric | Measured Indicator | Observation Shuttle (Segment) | Observation Bus (Segment) | ||
|---|---|---|---|---|---|
| Lowest Value | Highest Value | Lowest Value | Highest Value | ||
| Transportation Performance | Mean Speed (higher is better) | m/s (1, 19) | m/s (3) | m/s (1) | m/s (5) |
| Punctuality | (lower is better) | m/s (18) | m/s (1) | m/s (18) | m/s (4) |
| Comfort | (lower is better) | g (18) | g (1) | g (18) | g (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rettig, R.; Schöne, C.; Diebold, T.; Maaß, J. Experimental Performance Assessment of an Automated Shuttle in a Complex, Public Road Environment. Future Transp. 2025, 5, 165. https://doi.org/10.3390/futuretransp5040165
Rettig R, Schöne C, Diebold T, Maaß J. Experimental Performance Assessment of an Automated Shuttle in a Complex, Public Road Environment. Future Transportation. 2025; 5(4):165. https://doi.org/10.3390/futuretransp5040165
Chicago/Turabian StyleRettig, Rasmus, Christoph Schöne, Tyll Diebold, and Jacqueline Maaß. 2025. "Experimental Performance Assessment of an Automated Shuttle in a Complex, Public Road Environment" Future Transportation 5, no. 4: 165. https://doi.org/10.3390/futuretransp5040165
APA StyleRettig, R., Schöne, C., Diebold, T., & Maaß, J. (2025). Experimental Performance Assessment of an Automated Shuttle in a Complex, Public Road Environment. Future Transportation, 5(4), 165. https://doi.org/10.3390/futuretransp5040165

