Quantum-Enhanced Dual-Backbone Architecture for Accurate Gastrointestinal Disease Detection Using Endoscopic Imaging
Abstract
1. Introduction
- We propose a hybrid quantum–classical framework that effectively combines classical machine learning with quantum computational components.
- We use quantum circuits to improve the model’s ability to detect complex patterns in medical imaging data.
- We demonstrate that our model achieves superior classification performance with significantly fewer trainable parameters than its classical counterparts.
2. Literature Review
2.1. CNN- and Vision Transformer (ViT)-Based Methods
2.2. Transfer Learning-Based Methods
3. Variational Quantum Circuit
3.1. Data Embedding
- (a)
- Initial quantum state: The quantum system is initialized in the state , representing qubits, each in the state . Here, the symbol ⊗ denotes the tensor product, a mathematical operation used to combine the states of individual qubits into a single multi-qubit state. For instance, if , the initial state is .
- (b)
- Embedding technique: Several techniques exist for embedding classical data into quantum states: (1) amplitude encoding [37], which utilizes the amplitudes of the quantum state to represent data; (2) basis encoding [38], which maps data to specific computational basis states; (3) Hamiltonian-based embeddings [39], which leverage problem-specific Hamiltonians, and a common embedding technique called angle embedding [40], where classical features are encoded into the rotation angles of single-qubit gates ( or or ), providing a straightforward and efficient data-loading mechanism. Due to its minimal number of qubits, hardware efficiency, and gate requirements, we used angle embedding as the embedding technique.
3.2. Parameterized Quantum Layer
3.3. Measurement
3.4. Overall Structure of the VQC
- Embedding , which maps classical data to a quantum state.
- Parameterized layers , which perform trainable transformations on that quantum state.
- Measurement , which recovers a classical result .
- : The overall VQC, taking a classical input and returning a classical output .
- ∘: Denotes function composition.
4. Proposed Method
4.1. Feature Extraction with Pretrained Models
4.1.1. MobileNetV2
- Depthwise convolution: This applies a single convolutional filter to each input channel individually, rather than all channels at once. Mathematically, for an input feature map , the depthwise convolution is defined as
- Pointwise convolution: Pointwise convolution utilizes convolutions to combine the outputs of the depthwise convolution across channels. For an intermediate feature map , the pointwise convolution is defined asThe combination of these two operations forms the backbone of efficient architectures. By separating spatial and channel-wise processing, these operations reduce the number of parameters and computational costs while preserving the ability to capture rich feature representations [42]. The final feature map is given by
- Inverted residuals with linear bottlenecks: Another main feature in MobileNetV2 is the inverted residual block, which reverses the traditional residual block structure. Instead of reducing and expanding the feature dimensions, it first expands the number of channels, performs convolutions, and then projects the result back to lower-dimensional space. Each block consists of the following:
- -
- Expansion: The number of channels in the input feature map is increased.
- -
- Depthwise convolution: A depthwise convolution is applied to the expanded feature map, further increasing the spatial feature dimensionality within each channel.
- -
- Projection: A pointwise convolution is utilized to reduce the number of channels back to the original input dimension.
4.1.2. EfficientNetB0
- d controls the depth of the network;
- w controls the width of the network, meaning the number of channels per layer;
- r controls the resolution of the image;
- is a constant that the user chooses, which decides the scaling of the whole network.
4.2. Quantum Circuit Integration
4.2.1. Linear Transformation
- : Original input feature vector extracted from MobileNetV2 and EfficientNetB0;
- : Weight matrix of the linear layer, transforming the input from n dimensions to 4 dimensions;
- : Bias vector of the linear layer;
- : Reduced feature vector for quantum processing.
4.2.2. Angle Embedding
4.2.3. Variational Quantum Circuit
- : Sequence of rotation operations applied to each qubit;
- , , : Trainable parameters for rotations around the X, Y, and Z axes, respectively.
4.2.4. Overall VQC Operation
4.3. Measurement
4.4. Optimization
4.4.1. Gradient Approximation
- : The loss evaluated after shifting the parameter by ;
- : The loss evaluated after shifting the parameter by .
4.4.2. Parameter Update Rule
- : Parameter vector at iteration t;
- : The learning rate; a hyperparameter that determines the step size for the update;
- : The gradient of the loss function for .
4.4.3. Loss Function
- n: Number of classes;
- : The true probability distribution;
- : The predicted probability distribution.
5. Experiments and Results
5.1. Dataset
5.1.1. Dataset Details
- Normal: Represents healthy intestinal tissue with normal color and surface texture [48].
- Polyps: Small growths on the colon lining, appearing individually or in groups, with distinct color and texture differences from surrounding tissue. While most polyps are benign and cause no symptoms, some types may develop into colorectal cancer [48].
- Esophagitis: Inflammation of the esophagus. Common symptoms include heartburn, pain, and sore throat. Without treatment, complications can include ulcers and bleeding, which may cause painful swallowing [48].
- Ulcers: A condition affecting the large intestine’s lining, causing inflammation ranging from mild to severe. Ulcerative areas often show a white coating where the body is attempting to heal damaged tissue [48]. Patients with this condition are at higher risk of cancer compared to other people.
5.1.2. Data Augmentation and Normalization
5.2. Network Setup and Training
5.3. Diagnostic Metrics
5.4. Results and Discussion
5.4.1. Number of Parameters
5.4.2. Performance Analysis
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CE | Capsule endoscopy |
CNN | Convolutional neural network |
CNOT | Controlled-NOT |
DL | Deep learning |
FQDN | Fused Quantum Dual-Backbone Network |
GI | Gastrointestinal |
ML | Machine learning |
NISQ | Noisy intermediate-scale quantum |
PQC | Parametrized quantum circuit |
QML | Quantum machine learning |
QNN | Quantum neural network |
ViT | Vision Transformer |
VQC | Variational quantum circuit |
WCE | Wireless capsule endoscopy |
References
- Chan, H.P.; Samala, R.K.; Hadjiiski, L.M.; Zhou, C. Deep learning in medical image analysis. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2020; Volume 1213, pp. 3–21. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- O’Shea, K. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar] [CrossRef]
- Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer learning for medical imaging. Adv. Neural Inf. Process. Syst. 2019, 32, 3347–3357. [Google Scholar]
- Henry, E.U.; Emebob, O.; Omonhinmin, C.A. Vision transformers in medical imaging: A review. arXiv 2022, arXiv:2211.10043. [Google Scholar] [CrossRef]
- Khatun, A.; Usman, M. Quantum Transfer Learning with Adversarial Robustness for Classification of High-Resolution Image Datasets. arXiv preprint 2024, arXiv:2401.17009. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef]
- Maheshwari, D.; Garcia-Zapirain, B.; Sierra-Sosa, D. Quantum Machine Learning Applications in the Biomedical Domain: A Systematic Review. IEEE Access 2022, 10, 80463–80484. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 2019, 4, 043001. [Google Scholar] [CrossRef]
- Sim, S.; Johnson, P.D.; Aspuru-Guzik, A. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2019, 2, 1900070. [Google Scholar] [CrossRef]
- Hubregtsen, T.; Pichlmeier, J.; Stecher, P.; Bertels, K. Evaluation of parameterized quantum circuits: On the relation between classification accuracy, expressibility, and entangling capability. Quantum Mach. Intell. 2021, 3, 1–19. [Google Scholar] [CrossRef]
- Senokosov, A.; Sedykh, A.; Sagingalieva, A.; Kyriacou, B.; Melnikov, A. Quantum machine learning for image classification. Mach. Learn. Sci. Technol. 2024, 5, 015040. [Google Scholar] [CrossRef]
- Mari, A.; Bromley, T.R.; Izaac, J.; Schuld, M.; Killoran, N. Transfer learning in hybrid classical-quantum neural networks. Quantum 2020, 4, 340. [Google Scholar] [CrossRef]
- Henderson, M.; Shakya, S.; Pradhan, S.; Cook, T. Quanvolutional neural networks: Powering image recognition with quantum circuits. Quantum Mach. Intell. 2020, 2, 2. [Google Scholar] [CrossRef]
- Majumdar, R.; Baral, B.; Bhalgamiya, B.; Roy, T.D. Histopathological cancer detection using hybrid quantum computing. arXiv preprint 2023, arXiv:2302.04633. [Google Scholar] [CrossRef]
- Pannu, H.S.; Ahuja, S.; Dang, N.; Soni, S.; Malhi, A.K. Deep learning based image classification for intestinal hemorrhage. Multimed. Tools Appl. 2020, 79, 21941–21966. [Google Scholar] [CrossRef]
- Lafraxo, S.; El Ansari, M.; Koutti, L. Computer-aided system for bleeding detection in wce images based on cnn-gru network. Multimed. Tools Appl. 2024, 83, 21081–21106. [Google Scholar] [CrossRef]
- Soares Lima, D.L.; Pinto Pessoa, A.C.; De Paiva, A.C.; Trigueiros da Silva Cunha, A.M.; Júnior, G.B.; De Almeida, J.D.S. Classification of Video Capsule Endoscopy Images Using Visual Transformers. In Proceedings of the 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Ioannina, Greece, 27–30 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, R.; Yan, J.; Li, C.; Liu, Q.; Wang, L.; Wang, H. High-Speed and Accurate Diagnosis of Gastrointestinal Disease: Learning on Endoscopy Images Using Lightweight Transformer with Local Feature Attention. Bioengineering 2023, 10, 1416. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Tang, J. Vision Transformer with Hybrid Shifted Windows for Gastrointestinal Endoscopy Image Classification. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4452–4461. [Google Scholar] [CrossRef]
- Oukdach, Y.; Kerkaou, Z.; El Ansari, M.; Koutti, L.; Fouad El Ouafdi, A.; De Lange, T. ViTCA-Net: A framework for disease detection in video capsule endoscopy images using a vision transformer and convolutional neural network with a specific attention mechanism. Multimed. Tools Appl. 2024, 83, 63635–63654. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Z.; Song, L.; Liu, X.; Liu, S. Multiclassification of endoscopic colonoscopy images based on deep transfer learning. Comput. Math. Methods Med. 2021, 2021, 2485934. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Chakareski, J. Deep transfer learning for automated intestinal bleeding detection in capsule endoscopy imaging. J. Digit. Imaging 2021, 34, 404–417. [Google Scholar] [CrossRef]
- Fonseca, F.; Nunes, B.; Salgado, M.; Cunha, A. Abnormality classification in small datasets of capsule endoscopy images. Procedia Comput. Sci. 2022, 196, 469–476. [Google Scholar] [CrossRef]
- Dheir, I.M.; Abu-Naser, S.S. Classification of Anomalies in Gastrointestinal Tract Using Deep Learning. Int. J. Acad. Eng. Res. 2022, 6, 15–28. [Google Scholar]
- Mukhtorov, D.; Rakhmonova, M.; Muksimova, S.; Cho, Y.I. Endoscopic image classification based on explainable deep learning. Sensors 2023, 23, 3176. [Google Scholar] [CrossRef]
- Alhajlah, M.; Noor, M.N.; Nazir, M.; Mahmood, A.; Ashraf, I.; Karamat, T. Gastrointestinal diseases classification using deep transfer learning and features optimization. Comput. Mater. Contin 2023, 75, 2227–2245. [Google Scholar] [CrossRef]
- Mary, X.A.; Raj, A.; Evangeline, C.S.; Neebha, T.M.; Kumaravelu, V.B.; Manimegalai, P. Multi-class Classification of Gastrointestinal Diseases using Deep Learning Techniques. Open Biomed. Eng. J. 2023, 17, e187412072301300. [Google Scholar] [CrossRef]
- Gunasekaran, H.; Ramalakshmi, K.; Swaminathan, D.K.; Mazzara, M. GIT-Net: An ensemble deep learning-based GI tract classification of endoscopic images. Bioengineering 2023, 10, 809. [Google Scholar] [CrossRef]
- Cuevas-Rodriguez, E.O.; Galvan-Tejada, C.E.; Maeda-Gutiérrez, V.; Moreno-Chávez, G.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Luna-García, H.; Moreno-Baez, A.; Celaya-Padilla, J.M. Comparative study of convolutional neural network architectures for gastrointestinal lesions classification. PeerJ 2023, 11, e14806. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Kundu, S.; Topaloglu, R.O.; Ghosh, S. Quantum-classical hybrid machine learning for image classification (iccad special session paper). In Proceedings of the 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), Munich, Germany, 1–4 November 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Guarasci, R.; Minutolo, A.; De Pietro, G.; Esposito, M. Quantum transfer learning for acceptability judgements. Quantum Mach. Intell. 2024, 6, 13. [Google Scholar] [CrossRef]
- Ashhab, S. Quantum state preparation protocol for encoding classical data into the amplitudes of a quantum information processing register’s wave function. Phys. Rev. Res. 2022, 4, 013091. [Google Scholar] [CrossRef]
- Rath, M.; Date, H. Quantum data encoding: A comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy. EPJ Quantum Technol. 2024, 11, 72. [Google Scholar] [CrossRef]
- Leng, J.; Li, J.; Peng, Y.; Wu, X. Expanding Hardware-Efficiently Manipulable Hilbert Space via Hamiltonian Embedding. arXiv 2024, arXiv:2401.08550. [Google Scholar] [CrossRef]
- Weigold, M.; Barzen, J.; Leymann, F.; Salm, M. Encoding patterns for quantum algorithms. IET Quantum Commun. 2021, 2, 141–152. [Google Scholar] [CrossRef]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: New York, NY, USA, 2010; pp. 242–264. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Tan, M. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. [Google Scholar] [CrossRef]
- Lin, C.; Yang, P.; Wang, Q.; Qiu, Z.; Lv, W.; Wang, Z. Efficient and accurate compound scaling for convolutional neural networks. Neural Netw. 2023, 167, 787–797. [Google Scholar] [CrossRef]
- Colaco, S.J.; Han, D.S. Deep learning-based facial landmarks localization using compound scaling. IEEE Access 2022, 10, 7653–7663. [Google Scholar] [CrossRef]
- Llugsi, R.; El Yacoubi, S.; Fontaine, A.; Lupera, P. Comparison between Adam, AdaMax and Adam W optimizers to implement a Weather Forecast based on Neural Networks for the Andean city of Quito. In Proceedings of the 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 12–15 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [Google Scholar] [CrossRef]
- Montalbo, F.J.P. Diagnosing gastrointestinal diseases from endoscopy images through a multi-fused CNN with auxiliary layers, alpha dropouts, and a fusion residual block. Biomed. Signal Process. Control 2022, 76, 103683. [Google Scholar] [CrossRef]
- Pogorelov, K.; Randel, K.R.; Griwodz, C.; Eskeland, S.L.; de Lange, T.; Johansen, D.; Spampinato, C.; Dang-Nguyen, D.T.; Lux, M.; Schmidt, P.T.; et al. KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection. In Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 164–169. [Google Scholar] [CrossRef]
- Yang, K.; Chang, S.; Tian, Z.; Gao, C.; Du, Y.; Zhang, X.; Liu, K.; Meng, J.; Xue, L. Automatic polyp detection and segmentation using shuffle efficient channel attention network. Alex. Eng. J. 2022, 61, 917–926. [Google Scholar] [CrossRef]
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.; et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968. [Google Scholar] [CrossRef]
- Eusebi, P. Diagnostic accuracy measures. Cerebrovasc. Dis. 2013, 36, 267–272. [Google Scholar] [CrossRef]
- Dalianis, H.; Dalianis, H. Evaluation metrics and evaluation. In Clinical Text Mining: Secondary Use of Electronic Patient Records; Springer: Cham, Switzerland, 2018; pp. 45–53. [Google Scholar] [CrossRef]
- Hosain, A.S.; Islam, M.; Mehedi, M.H.K.; Kabir, I.E.; Khan, Z.T. Gastrointestinal disorder detection with a transformer based approach. In Proceedings of the 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 12–15 October 2022; pp. 0280–0285. [Google Scholar] [CrossRef]
- Kaur, P.; Kumar, R. Performance analysis of convolutional neural network architectures over wireless capsule endoscopy dataset. Bull. Electr. Eng. Inform. 2024, 13, 312–319. [Google Scholar] [CrossRef]
- Rizal, R. Enhancing Gastrointestinal Disease Diagnosis with KNN: A Study on WCE Image Classification. Int. J. Artif. Intell. Med. Issues 2023, 1, 45–55. [Google Scholar] [CrossRef]
Technique | Parameters |
---|---|
Random resized crop | Crop size: 224 × 224 pixels |
Random horizontal flip | Probability: 50% |
Random vertical flip | Probability: 50% |
Random rotation | Degrees: ±10° |
Color jitter | Brightness: 0.2 |
Contrast: 0.2 | |
Saturation: 0.2 | |
Hue: 0.2 | |
Normalize | Mean: [0.485, 0.456, 0.406] |
Std: [0.229, 0.224, 0.225] |
Model | Total Params | Trainable Params | Test Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
MobileNetV2 | 2.55 M | 2.55 M | 91.37% | 91.42% | 91.37% | 91.33% |
EfficientNetB0 | 4.34 M | 4.34 M | 94.13% | 94.41% | 94.13% | 94.09% |
Classical Fusion | 8.99 M | 2.77 M | 94.67% | 94.80% | 94.72% | 94.66% |
FQDN | 6.39 M | 153,784 | 95.42% | 95.42% | 95.45% | 95.43% |
Class | FQDN | Classical Model | ||||
---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Precision | Recall | F1-Score | |
Normal | 97% | 100% | 99% | 94% | 100% | 97% |
Ulcerative Colitis | 93% | 91% | 92% | 97% | 87% | 91% |
Polyps | 91% | 92% | 91% | 89% | 92% | 90% |
Esophagitis | 100% | 99% | 100% | 100% | 100% | 100% |
Overall | 95.42% | 95.45% | 95.43% | 94.80% | 94.72% | 94.66% |
Accuracy | 95.42% | 94.67% |
Method | Trainable Params | Total Params | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
VGG16 [55] | 529,412 | 15,244,100 | 94% | 94% | 94% | 94% |
InceptionV3 [55] | 21,802,784 | 23,905,060 | 94% | 94% | 94% | 94% |
Vision Transformer [54] | - | - | 95.63% | 91.75% | 89.25% | 88.75% |
DenseNet201 [54] | 66,264,452 | 66,493,508 | 71.88% | 89.5% | 82.75% | 80.75% |
KNN [56] | - | - | 88.00% | 88.33% | 88.00% | 87.97% |
FQDN | 153,784 | 6,385,204 | 95.42% | 95.42% | 95.45% | 95.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzoug, N.; Halab, K.; El Meslouhi, O.; Abou Elassad, Z.E.; Akhloufi, M.A. Quantum-Enhanced Dual-Backbone Architecture for Accurate Gastrointestinal Disease Detection Using Endoscopic Imaging. BioMedInformatics 2025, 5, 51. https://doi.org/10.3390/biomedinformatics5030051
Marzoug N, Halab K, El Meslouhi O, Abou Elassad ZE, Akhloufi MA. Quantum-Enhanced Dual-Backbone Architecture for Accurate Gastrointestinal Disease Detection Using Endoscopic Imaging. BioMedInformatics. 2025; 5(3):51. https://doi.org/10.3390/biomedinformatics5030051
Chicago/Turabian StyleMarzoug, Nabil, Khidhr Halab, Othmane El Meslouhi, Zouhair Elamrani Abou Elassad, and Moulay A. Akhloufi. 2025. "Quantum-Enhanced Dual-Backbone Architecture for Accurate Gastrointestinal Disease Detection Using Endoscopic Imaging" BioMedInformatics 5, no. 3: 51. https://doi.org/10.3390/biomedinformatics5030051
APA StyleMarzoug, N., Halab, K., El Meslouhi, O., Abou Elassad, Z. E., & Akhloufi, M. A. (2025). Quantum-Enhanced Dual-Backbone Architecture for Accurate Gastrointestinal Disease Detection Using Endoscopic Imaging. BioMedInformatics, 5(3), 51. https://doi.org/10.3390/biomedinformatics5030051