Enhanced Photocatalytic Activity of TiO2 Thin Film Deposited by Reactive RF Sputtering under Oxygen-Rich Conditions
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis of TiO2 Thin Films
2.2. Characterization
2.3. Measurement of Photocatalytic Activity
3. Results
3.1. XRD Measurements
3.2. Optical Transmittance Spectra
3.3. SEM Images
3.4. XPS Measurements
3.5. Photocatalytic Activity
4. Discussion
4.1. Plausible Explanation of a Less Oxidized State Induced under the Oxygen-Rich Condition
4.2. Origin of High Photocatalytic Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Patel, N.; Fernandes, R.; Guella, G.; Kale, A.; Miotello, A.; Patton, B.; Zanchetta, C. Structured and nanoparticle assembled Co−B thin films prepared by pulsed laser deposition: A very efficient catalyst for hydrogen production. J. Phys. Chem. C 2008, 112, 6968–6976. [Google Scholar] [CrossRef]
- Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505–516. [Google Scholar] [CrossRef]
- Yu, J.G.; Zhao, X.J.; Zhao, Q.N. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films 2000, 379, 7–14. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Hieu, V.Q.; Lam, T.C.; Khan, A.; Thi Vo, T.-T.; Nguyen, T.-Q.; Doan, V.D.; Tran, D.L.; Le, V.T.; Tran, V.A. TiO2/Ti3C2/g-C3N4 ternary heterojunction for photocatalytic hydrogen evolution. Chemosphere 2021, 285, 131429. [Google Scholar] [CrossRef] [PubMed]
- Hieu, V.Q.; Phung, T.K.; Nguyen, T.-Q.; Khan, A.; Doan, V.D.; Tran, V.A.; Le, V.T. Photocatalytic degradation of methyl orange dye by Ti3C2–TiO2 heterojunction under solar light. Chemosphere 2021, 276, 130154. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.K.; Liao, M.W.; Lai, C.W. Effects of oxygen flow ratios and annealing temperatures on raman and photoluminescence of titanium oxide thin films deposited by reactive magnetron sputtering. Thin Solid Films 2009, 518, 1415–1418. [Google Scholar] [CrossRef]
- Pomoni, K.; Vomvas, A.; Trapalis, C. Electrical conductivity and photoconductivity studies of TiO2 sol–gel thin films and the effect of N-doping. J. Non-Cryst. Solids 2008, 354, 4448–4457. [Google Scholar] [CrossRef]
- Natarajan, C.; Fukunaga, N.; Nogami, G. Titanium dioxide thin film deposited by spray pyrolysis of aqueous solution. Thin Solid Films 1998, 322, 6–8. [Google Scholar] [CrossRef]
- Terashima, M.; Inoue, N.; Kashiwabara, S.; Fujimoto, R. Photocatalytic TiO2 thin-films deposited by pulsed laser deposition technique. IEEJ Trans. Fundam. Mater. 2001, 121, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Hou, P. Spectroscopic ellipsometry study on e-beam deposited titanium dioxide films. Thin Solid Films 2004, 455–456, 52–529. [Google Scholar] [CrossRef]
- Sun, H.; Wang, C.; Pang, S.; Li, X.; Tao, Y.; Tang, H.; Liu, M. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. J. Non-Cryst. Solids 2008, 354, 1440–1443. [Google Scholar] [CrossRef]
- Boukrouh, S.; Bensaha, R.; Bourgeois, S.; Finot, E.; Marco de Lucas, M.C. Reactive direct current magnetron sputtered TiO2 thin films with amorphous to crystalline structures. Thin Solid Films 2008, 516, 6353–6358. [Google Scholar] [CrossRef]
- Chiu, S.-M.; Chen, Z.-S.; Yang, K.-Y.; Hsu, Y.-L.; Gan, D. Photocatalytic activity of doped TiO2 coatings prepared by sputtering deposition. J. Mater. Process. Technol. 2007, 192–193, 60–67. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Rahman, K.H.; Wu, C.-C.; Chen, K.-C. A review on the pathways of the improved structural characteristics and photocatalytic performance of titanium dioxide (TiO2) thin films fabricated by the magnetron-sputtering technique. Catalysts 2020, 10, 598. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Zhu, S.; Wang, F. Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering. Surf. Coat. Technol. 2004, 182, 192–198. [Google Scholar] [CrossRef]
- Huang, C.H.; Tsao, C.C.; Hsu, C.Y. Study on the photocatalytic activities of TiO2 films prepared by reactive RF sputtering. Ceram. Int. 2011, 37, 2781–2788. [Google Scholar] [CrossRef]
- Chiou, A.H.; Kuo, C.G.; Huang, C.H.; Wu, W.F.; Chou, C.P.; Hsu, C.Y. Influence of oxygen flow rate on photocatalytic TiO2 films deposited by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 2011, 23, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Machda, F.; Ogawa, T.; Okumura, H.; Ishihara, K.N. Damp heat durability of Al-doped ZnO transparent electrodes with different crystal growth orientations. ECS J. Solid State Sci. Technol. 2019, 8, Q240–Q244. [Google Scholar] [CrossRef]
- Wang, L.-Q.; Baer, D.R.; Engelhard, M.H. Creation of variable concentrations of defects on TiO2(110) using low-density electron beams. Surf. Sci. 1994, 320, 295–306. [Google Scholar] [CrossRef]
- Yu, J.-G.; Yu, H.-G.; Cheng, B.; Zhao, X.-J.; Yu, J.C.; Ho, W.-K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 2003, 107, 13871–13879. [Google Scholar] [CrossRef]
- Paul, A.; John, J.C.; Augustine, S.; Sebastian, T.; Joy, A.; Joy, J.; Maria Michael, T. Comparison of photocatalytic efficiency of TiO2 and In2S3 thin films under UV and visible light irradiance. Adv. Mater. Lett. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Lee, H.N.; Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 32355. [Google Scholar] [CrossRef]
- Farfan-Arribas, E.; Madix, R.J. Role of defects in the adsorption of aliphatic alcohols on the TiO2(110) surface. J. Phys. Chem. B 2002, 106, 10680–10692. [Google Scholar] [CrossRef]
- Löbl, P.; Huppertz, M.; Mergel, D. Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films 1994, 251, 72–79. [Google Scholar] [CrossRef]
- Zeman, P.; Takabayashi, S. Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate. Surf. Coat. Technol. 2002, 153, 93–99. [Google Scholar] [CrossRef]
- Schiller, S.; Beister, G.; Sieber, W.; Schirmer, G.; Hacker, E. Influence of deposition parameters on the optical and structural properties of TiO2 films produced by reactive D.C. Plasmatron sputtering. Thin Solid Films 1981, 83, 239–245. [Google Scholar] [CrossRef]
- Cheng, H.; Selloni, A. Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile. Phys. Rev. B 2009, 79, 092101 . [Google Scholar]
- Li, H.; Guo, Y.; Robertson, J. Calculation of TiO2 surface and subsurface oxygen vacancy by the screened exchange functional. J. Phys. Chem. C 2015, 119, 18160–18166. [Google Scholar] [CrossRef]
- Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A 2003, 244, 383–391. [Google Scholar] [CrossRef]
- Kho, Y.K.; Iwase, A.; Teoh, W.Y.; Mädler, L.; Kudo, A.; Amal, R. Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J. Phys. Chem. C 2010, 114, 2821–2829. [Google Scholar] [CrossRef]
- Su, R.; Bechstein, R.; Sø, L.; Vang, R.T.; Sillassen, M.; Esbjörnsson, B.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287–24292. [Google Scholar] [CrossRef]
- Nowotny, M.K.; Sheppard, L.R.; Bak, T.; Nowotny, J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 2008, 112, 5275–5300. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Fu, X.; Li, Z.; Han, W.; Wang, X. Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in Nafion membranes. Langmuir 2009, 25, 1218–1223. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.Q.; Fu, X.; Zhang, N.; Xu, Y.J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Sclafani, A.; Herrmann, J.M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 1996, 100, 13655–13661. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yamasue, E.; Ishihara, K.N.; Okumura, H. Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air. Appl. Catal. B 2010, 93, 217–226. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, T.; Zhao, Y.; Okumura, H.; Ishihara, K.N. Enhanced Photocatalytic Activity of TiO2 Thin Film Deposited by Reactive RF Sputtering under Oxygen-Rich Conditions. Photochem 2022, 2, 138-149. https://doi.org/10.3390/photochem2010011
Ogawa T, Zhao Y, Okumura H, Ishihara KN. Enhanced Photocatalytic Activity of TiO2 Thin Film Deposited by Reactive RF Sputtering under Oxygen-Rich Conditions. Photochem. 2022; 2(1):138-149. https://doi.org/10.3390/photochem2010011
Chicago/Turabian StyleOgawa, Takaya, Yuekai Zhao, Hideyuki Okumura, and Keiichi N. Ishihara. 2022. "Enhanced Photocatalytic Activity of TiO2 Thin Film Deposited by Reactive RF Sputtering under Oxygen-Rich Conditions" Photochem 2, no. 1: 138-149. https://doi.org/10.3390/photochem2010011
APA StyleOgawa, T., Zhao, Y., Okumura, H., & Ishihara, K. N. (2022). Enhanced Photocatalytic Activity of TiO2 Thin Film Deposited by Reactive RF Sputtering under Oxygen-Rich Conditions. Photochem, 2(1), 138-149. https://doi.org/10.3390/photochem2010011