Photoreactions of Sc3N@C80 with Disilirane, Silirane, and Digermirane: A Photochemical Method to Separate Ih and D5h Isomers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of Sc3N@Ih-C80 and Sc3N@D5h-C80 Using Photochemical Functionalization
2.2. Characterization of Germylated Sc3N@Ih-C80 9
2.3. Transient Absorption Spectroscopy of Photoreactions of Sc3N@C80
2.4. Theoretical Calculations of Photoreactions of Sc3N@C80
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Notes
- Akasaka, T.; Nagase, S. (Eds.) Endofullerenes: A New Family of Carbon Clusters; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Dunsch, L.; Yang, S. Metal nitride cluster fullerenes: Their current state and future prospects endohedral fullerenes. Small 2007, 8, 1298–1320. [Google Scholar] [CrossRef]
- Chaur, M.N.; Melin, F.; Ortiz, A.L.; Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem. Int. Ed. 2009, 48, 7514–7538. [Google Scholar] [CrossRef]
- Yamada, M.; Akasaka, T.; Nagase, S. Endohedral metal atoms in pristine and functionalized fullerene cages. Acc. Chem. Res. 2010, 43, 92–102. [Google Scholar] [CrossRef]
- Akasaka, T.; Wudl, F.; Nagase, S. (Eds.) Chemistry of Nanocarbons; Wiley: Chichester, UK, 2010. [Google Scholar]
- Maeda, Y.; Tsuchiya, T.; Lu, X.; Takano, Y.; Akasaka, T.; Nagase, S. Current progress on the chemical functionalization and supramolecular chemistry of M@C82. Nanoscale 2011, 3, 2421–2429. [Google Scholar] [CrossRef]
- Lu, X.; Akasaka, T.; Nagase, S. Chemistry of endohedral metallofullerenes: The role of metals. Chem. Commun. 2011, 47, 5942–5957. [Google Scholar] [CrossRef]
- Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 2012, 41, 7723–7760. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Stevenson, S.; Dorn, H.C. Trimetallic nitride template endohedral metallofullerenes: Discovery, structural characterization, reactivity, and applications. Acc. Chem. Res. 2013, 46, 1458–1557. [Google Scholar] [CrossRef]
- Rivera-Nazario, D.M.; Pinzón, J.R.; Stevenson, S.; Echegoyen, L.A. Buckyball maracas: Exploring the inside and outside properties of endohedral fullerenes. J. Phys. Org. Chem. 2013, 26, 194–205. [Google Scholar] [CrossRef]
- Yamada, M.; Akasaka, T.; Nagase, S. Carbene additions to fullerenes. Chem. Rev. 2013, 113, 7209–7264. [Google Scholar] [CrossRef]
- Lu, X.; Akasaka, T.; Nagase, S. Carbide cluster metallofullerenes: Structure, properties, and possible origin. Acc. Chem. Res. 2013, 46, 1627–1635. [Google Scholar] [CrossRef]
- Popov, A.A.; Yang, S.; Dunsch, L. Endohedral fullerenes. Chem. Rev. 2013, 113, 5989–6113. [Google Scholar] [CrossRef]
- Nagase, S. Theory and calculations of molecules containing heavier main group elements and fullerenes encaging transition metals: Interplay with experiment. Bull. Chem. Soc. Jpn. 2014, 87, 167–195. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Akasaka, T. Emergence of highly elaborated π-space and extending its functionality based on nanocarbons: New vistas in the fullerene world. Bull. Chem. Soc. Jpn. 2014, 87, 1289–1314. [Google Scholar] [CrossRef] [Green Version]
- Kako, M.; Nagase, S.; Akasaka, T. Functionalization of Endohedral Metallofullerenes with Reactive Silicon and Germanium Compounds. Molecules 2017, 22, 1179. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Liu, M.T.H.; Nagase, S.; Akasaka, T. New Horizons in Chemical Functionalization of Endohedral Metallofullerenes. Molecules 2020, 25, 3626. [Google Scholar] [CrossRef]
- Duchamp, J.C.; Demortier, A.; Fletcher, K.R.; Dorn, D.; Iezzi, E.B.; Glass, T.; Dorn, H.C. An isomer of the endohedral metallofullerene Sc3N@C80 with D5h symmetry. Chem. Phys. Lett. 2003, 375, 655–659. [Google Scholar] [CrossRef]
- Krause, M.; Dunsch, L. Isolation and Characterization of Two Sc3N@C80 Isomers. ChemPhysChem 2004, 5, 1445–1449. [Google Scholar] [CrossRef]
- Wang, Z.; Omachi, H.; Shinohara, H. Non-Chromatographic Purification of Endohedral Metallofullerenes. Molecules 2017, 22, 718. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Xu, L.; Anderson, M.R.; Ge, Z.; Zuo, T.; Wang, X.; Olmstead, M.M.; Balch, A.L.; Gibson, H.W.; Dorn, H.C. Structure and Enhanced Reactivity Rates of the D5h Sc3N@C80 and Lu3N@C80 Metallofullerene Isomers: The Importance of the Pyracylene Motif. J. Am. Chem. Soc. 2006, 128, 8581–8589. [Google Scholar] [CrossRef]
- Stevenson, S.; Mackey, M.A.; Coumbe, C.E.; Phillips, J.P.; Elliott, B.; Echegoyen, L. Rapid Removal of D5h Isomer Using the “Stir and Filter Approach” and Isolation of Large Quantities of Isomerically Pure Sc3N@C80 Metallic Nitride Fullerenes. J. Am. Chem. Soc. 2007, 129, 6072–6073. [Google Scholar] [CrossRef]
- Stevenson, S.; Mackey, M.A.; Pickens, J.E.; Stuart, M.A.; Confait, B.S.; Phillips, J.P. Selective Complexation and Reactivity of Metallic Nitride and Oxometallic Fullerenes with Lewis Acids and Use as an Effective Purification Method. Inorg. Chem. 2009, 48, 11685–11690. [Google Scholar] [CrossRef] [Green Version]
- Cerón, M.R.; Li, F.F.; Echegoyen, L. An efficient method to separate Sc3N@C80 Is and D5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium [Fe(COCH3C5H4)Cp]+. Chem. Eur. J. 2013, 19, 7410–7415. [Google Scholar] [CrossRef]
- Cerón, M.R.; Izquierdo, M.; Alegret, N.; Valdez, J.A.; Rodríguez-Fortea, A.; Olmstead, M.M.; Balch, A.L.; Poblet, J.M.; Echegoyen, L. Reactivity differences of Sc3N@C2n (2n = 68 and 80). Synthesis of the first methanofullerene derivatives of Sc3N@D5h-C80. Chem. Commun. 2016, 52, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Kako, M.; Sugiura, T.; Akasaka, T. Photochemical addition of silirane to endohedral metallofullerene: Electronic properties of carbosilylated Sc3N@Ih-C80. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 201–206. [Google Scholar] [CrossRef]
- Kako, M.; Sugiura, T.; Miyabe, K.; Yasui, M.; Yamada, M.; Maeda, Y.; Guo, J.-D.; Nagase, S.; Akasaka, T. Preparation, Structural Determination, and Characterization of Electronic Properties of [5,6]- and [6,6]-Carbosilylated Sc3N@Ih-C80. Chem. Asian J. 2017, 12, 1391–1399. [Google Scholar] [CrossRef]
- Sato, K.; Kako, M.; Mizorogi, N.; Tsuchiya, T.; Akasaka, T.; Nagase, S. Bis-silylation of Lu3N@Ih-C80: Considerable variation in the electronic structures. Org. Lett. 2012, 14, 5908–5911. [Google Scholar] [CrossRef]
- Kako, M.; Miyabe, M.; Sato, K.; Suzuki, M.; Mizorogi, N.; Wang, W.-W.; Yamada, M.; Maeda, Y.; Olmstead, M.M.; Balch, A.L.; et al. Preparation, structural determination, and characterization of electronic properties of bis-silylated and bis-germylated Lu3N@Ih-C80. Chem. Eur. J. 2015, 21, 16411–16420. [Google Scholar] [CrossRef]
- Han, A.H.; Wakahara, T.; Maeda, Y.; Akasaka, T.; Fujitsuka, M.; Ito, O.; Yamamoto, K.; Kako, M.; Kobayashi, K.; Nagase, S. A new method for separating the D3 and C2v isomers of C78. New J. Chem. 2009, 33, 497–500. [Google Scholar] [CrossRef]
- Wu, B.; Hu, J.; Cui, P.; Jiang, L.; Chen, Z.; Zhang, Q.; Wang, C.; Luo, Y. Visible-Light Photoexcited Electron Dynamics of Scandium Endohedral Metallofullerenes: The Cage Symmetry and Substituent Effects. J. Am. Chem. Soc. 2015, 137, 8769–8774. [Google Scholar] [CrossRef]
- Wakahara, T.; Iiduka, Y.; Ikenaga, O.; Nakahodo, T.; Sakuraba, A.; Tsuchiya, T.; Maeda, Y.; Kako, M.; Akasaka, T.; Yoza, K.; et al. Characterization of the bis-silylated endofullerene Sc3N@C80. J. Am. Chem. Soc. 2006, 128, 9919–9925. [Google Scholar] [CrossRef]
- Shriver, D.F.; Atkins, P.W.; Langford, C.H. Inorganic Chemistry, 2nd ed.; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Cao, X.Y.; Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 2002, 581, 139–147. [Google Scholar] [CrossRef]
- Pinzón, J.R.; Gasca, D.C.; Sankaranarayanan, S.G.; Bottari, G.; Torres, T.; Guldi, D.M.; Echegoyen, L. Photoinduced Charge Transfer and Electrochemical Properties of Triphenylamine Ih-Sc3N@C80 Donor-Acceptor Conjugates. J. Am. Chem. Soc. 2009, 131, 7727–7734. [Google Scholar] [CrossRef] [Green Version]
- Additionally reference transient absorption measurements on pure toluene were performed (λex = 387 nm, E = 400 nJ), in order to independently prove the observed features in the respective Sc3N@Ih-C80 and Sc3N@D5h-C80 measurements (Figure 8 and Figure 10; red species). In these measurements the exact same signal with a maximum at 555 nm could be observed, due to the very high energy density of the laser excitation, thus confirming the triplet excited state signature of toluene (Figure S17).
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Kasha, M. Characterization of electronic transitions in complex molecules. Disc. Faraday Soc. 1950, 9, 14–19. [Google Scholar] [CrossRef]
- Akasaka, T.; Maeda, Y.; Wakahara, T.; Okamura, M.; Fujitsuka, M.; Ito, O.; Kobayashi, K.; Nagase, S.; Kako, M.; Nakadaira, Y.; et al. Novel Metal-free bis-silylation: C60-sensitized reaction of disilirane with benzonitrile. Org. Lett. 1999, 1, 1509–1512. [Google Scholar] [CrossRef]
- The ΔG values were calculated according to the Rehm-Weller equation [44] as follows: ΔG (kcal/mol) = 23.06[Eox(D/D+) − Ered(A/A−) − ΔE* + ε], where Eox(D/D+), Ered(A/A−), and ΔE* respectively represent the oxidation potential of electron-donor, the reduction potential of electron-acceptor, and the energies of excited states of electron-acceptors. Coulombic interaction energy ε in toluene (0.74) was calculated according to methods described in the literatures [46,47].
- Rehm, D.; Weller, A. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr. J. Chem. 1970, 8, 259–271. [Google Scholar] [CrossRef]
- Nagatsuka, J.; Sugitani, S.; Kako, M.; Nakahodo, T.; Mizorogi, N.; Ishitsuka, M.O.; Maeda, Y.; Tsuchiya, T.; Akasaka, T.; Gao, X.; et al. Photochemical addition of C60 with siliranes: Synthesis and characterization of carbosilylated and hydrosilylated C60 derivatives. J. Am. Chem. Soc. 2010, 132, 12106–12120. [Google Scholar] [CrossRef]
- Mattay, J.; Runsink, J.; Rumbach, T.; Ly, C.; Gersdorf, J. Selectivity and charge transfer in photoreactions of donor-acceptor systems. 5. Selectivity and Charge Transfer in Photoreactions of α, α, α-Trifluorotoluene with Olefins. J. Am. Chem. Soc. 1985, 107, 2557–2558. [Google Scholar] [CrossRef]
- Mattay, J.; Runsink, J.; Gersdorf, J.; Rumbach, T.; Ly, C. Selectivity and charge transfer in photoreactions of α,α,α-trifluorotoluene with olefins. Helv. Chem. Acta 1986, 69, 442–455. [Google Scholar] [CrossRef]
- Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses. J. Cryst. Soc. Jpn. 2009, 51, 218–224. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2013; (See Supplementary Materials for the complete list of authors.). [Google Scholar]
- Snellenburg, J.J.; Laptenok, S.P.; Seger, R.; Mullen, K.M.; van Stokkum, I.H.M. Glotaran: A Java-Based Graphical User Interface for the R Package TIMP. J. Stat. Softw. 2012, 49, 1–22. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kako, M.; Miyabe, K.; Fukazawa, S.; Kanzawa, S.; Yasui, M.; Yamada, M.; Maeda, Y.; Slanina, Z.; Uhlík, F.; Adamowicz, L.; et al. Photoreactions of Sc3N@C80 with Disilirane, Silirane, and Digermirane: A Photochemical Method to Separate Ih and D5h Isomers. Photochem 2022, 2, 122-137. https://doi.org/10.3390/photochem2010010
Kako M, Miyabe K, Fukazawa S, Kanzawa S, Yasui M, Yamada M, Maeda Y, Slanina Z, Uhlík F, Adamowicz L, et al. Photoreactions of Sc3N@C80 with Disilirane, Silirane, and Digermirane: A Photochemical Method to Separate Ih and D5h Isomers. Photochem. 2022; 2(1):122-137. https://doi.org/10.3390/photochem2010010
Chicago/Turabian StyleKako, Masahiro, Kyosuke Miyabe, Shinpei Fukazawa, Shinji Kanzawa, Masanori Yasui, Michio Yamada, Yutaka Maeda, Zdeněk Slanina, Filip Uhlík, Ludwik Adamowicz, and et al. 2022. "Photoreactions of Sc3N@C80 with Disilirane, Silirane, and Digermirane: A Photochemical Method to Separate Ih and D5h Isomers" Photochem 2, no. 1: 122-137. https://doi.org/10.3390/photochem2010010
APA StyleKako, M., Miyabe, K., Fukazawa, S., Kanzawa, S., Yasui, M., Yamada, M., Maeda, Y., Slanina, Z., Uhlík, F., Adamowicz, L., Papadopoulos, I., Guldi, D. M., Furukawa, M., Nagase, S., & Akasaka, T. (2022). Photoreactions of Sc3N@C80 with Disilirane, Silirane, and Digermirane: A Photochemical Method to Separate Ih and D5h Isomers. Photochem, 2(1), 122-137. https://doi.org/10.3390/photochem2010010