Abstract
The present study examines the influence of material and structural parameters on the fit and air permeability of textile face masks, surgical masks, and certified respirators. Nine samples were tested using the AccuFIT 9000 for quantitative fit factor (FF) measurements and the FX-3340 MinAir for air permeability in both airflow directions. Results show that increased thickness moderately improves FF, supporting better facial sealing. However, mass per unit area and bulk density show weak or no correlation with FF. Air permeability correlates weakly and negatively with FF, especially during exhalation, but remains essential for wearer comfort. Notably, some textile masks outperformed certified respirators in terms of fit, highlighting the importance of design, elasticity, and edge sealing. The findings suggest that effective mask performance depends on more than filtration materials or certification levels. A balanced design combining breathability, structural optimisation, and ergonomic fit is essential for both comfort and protection. These insights can guide the development of more effective reusable and disposable face coverings, particularly in aerosol-rich environments.
Keywords:
face mask; respirator; fit factor; air permeability; textile structure; comfort; protection; sealing; ergonomic design