Enhanced Production of Therapeutic Metabolites in Cork-Oak Somatic Embryos under Abiotic Stress Conditions
Abstract
:1. Introduction
2. Results
2.1. Establishment of Cork Oak Somatic Embryo Cultures
2.2. Antioxidant Capacity, Total Phenols, and Flavonoids
2.3. Presence and Quantification of Ellagic Acid, Chlorogenic Acid, and Serotonin
3. Discussion
4. Materials and Methods
4.1. Cork Oak Somatic Embryo Culture
4.2. Abiotic Elicitation Strategies
- 1.
- High-Temperature Stress Treatment: The somatic embryos were cultured on SM + Gln medium for 7 days at 35 ± 1 °C in darkness. This temperature was chosen based on previous studies indicating that it is a critical threshold for inducing stress responses in Quercus suber somatic embryos without causing irreversible tissue damage.
- 2.
- UV Stress Treatment: Somatic embryos were cultured on SM + Gln medium for 7 days and subjected to UV-C light for 15 min each day. The UV exposure was administered at specific intervals: 0 h, 24 h, 96 h, 120 h, 144 h, and 168 h from the start of the culture. This exposure schedule was designed to deliver a controlled dosage sufficient to induce stress responses while minimizing the risk of excessive necrosis or cellular damage. The UV-C exposure was conducted in a laminar flow hood to maintain a controlled environment and prevent contamination. For the remainder of the time, the embryos were kept in darkness.
- 3.
- Saline/Osmotic Stress Treatment: Two saline/osmotic stress treatments were applied. The somatic embryos were cultured on SM + Gln medium supplemented with NaCl at two different concentrations: 50 mM or 200 mM. The cultures were maintained for seven days in darkness.
- 4.
- Cerium Oxide Nanoparticle Stress (Nanoceria) Treatment: Two cerium oxide nanoparticle stress treatments were applied. The somatic embryos were cultured on SM + Gln medium supplemented with cerium oxide nanoparticles at two different concentrations: 100 mg/L or 200 mg/L. Commercially available nano-CeO2 particles (<25 nm particle size) purchased from Sigma-Aldrich Chemical Co. (Saint Louis, MO 63103, USA) were used as received. The dispersion of nano-CeO2 particles was achieved following the method described by Gomez-Garay et al. (2014) [9].
4.3. Analysis of Secondary Metabolites
4.3.1. Ethanolic Extracts
4.3.2. Methanolic Extracts
- 1.
- Chlorogenic acid:
- (1)
- Quantifier (m/z): 353.30 > 191.1 (EC: 17)
- (2)
- Qualifier (m/z): 353.30 > 93.1 (EC: 47)
- 2.
- Ellagic acid:
- (1)
- Quantifier (m/z): 300.80 > 144.95 (EC: 41)
- (2)
- Qualifier (m/z): 300.80 > 284.00 (EC: 33)
- 3.
- Serotonin:
- (1)
- Quantifier (m/z): 176.60 > 160.00 (EC: −13)
- (2)
- Qualifier (m/z): 176.60 > 115.00 (EC: −29)
4.4. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ávalos, A.; Pérez-Urria, C.E. Plant secondary metabolism. Reduca (Biol.) Ser. Veg. Physiol. 2009, 2, 119–145. [Google Scholar]
- Wink, M.; Botschen, F.; Gosmann, C.; Schäfer, H.; Waterman, P.G. Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. In Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; pp. 364–433. [Google Scholar]
- Moore, B.D.; Andrew, R.L.; Külheim, C.; Foley, W.J. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 2014, 201, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Environmental stress and secondary metabolites in plants: An overview. In Plant Metabolites and Regulation under Environmental Stress; Academic Press: Cambridge, MA, USA, 2018; pp. 153–167. [Google Scholar]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Qaderi, M.M.; Martel, A.B.; Strugnell, C.A. Environmental factors regulate plant secondary metabolites. Plants 2023, 12, 447. [Google Scholar] [CrossRef]
- Humbal, A.; Pathak, B. Influence of exogenous elicitors on the production of secondary metabolite in plants: A review (“VSI: Secondary metabolites”). Plant Stress 2023, 8, 100166. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Penella, C.; Hernández, J.A.; Díaz-Vivancos, P.; Sánchez-Blanco, M.J.; Navarro, J.M.; Barba-Espín, G. Towards a sustainable agriculture: Strategies involving phytoprotectants against salt stress. Agronomy 2020, 10, 194. [Google Scholar] [CrossRef]
- Gomez-Garay, A.; Pintos, B.; Manzanera, J.A.; Lobo, C.; Villalobos, N.; Martín, L. Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea in vitro plantlets. Biol. Trac. Elem. Res. 2014, 161, 143–150. [Google Scholar] [CrossRef]
- Xie, X.; He, Z.; Chen, N.; Tang, Z.; Wang, Q.; Cai, Y. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res. Int. 2019, 2019, 9732325. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. In vitro establishment and multiplication of juvenile and mature Douglas-fir and sugar pine. Acta Hortic. 1987, 212, 483–488. [Google Scholar] [CrossRef]
- Bueno, M.A.; Astorga, R.; Manzanera, J.A. Plant regeneration through somatic embryogenesis in Quercus suber L. Phys. Plant. 1992, 85, 30–34. [Google Scholar] [CrossRef]
- Makhlouf, F.Z.; Barkat, M.; Caponio, F. Comparative study of total phenolic content and antioxidant properties of Quercus fruit: Flour and oil. North Afr. J. Food Nutr. Res. 2019, 3, 148–155. [Google Scholar] [CrossRef]
- Fernandes, A.; Fernandes, I.; Cruz, L.; Mateus, N.; Cabral, M.; de Freitas, V. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L. J. Agri. Food Chem. 2009, 57, 11154–11160. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, I.; Godoy-Cancho, B.; Franco, L.; Martínez-Cañas, M.A.; Tormo, M.A. Quercus suber L. Cork extracts induce apoptosis in human myeloid leukaemia HL-60 cells. Phytother. Res. 2015, 29, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Custódio, L.; Patarra, J.; Alberício, F.; da Rosa Neng, N.; Nogueira JM, F.; Romano, A. Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind. Crops Prod. 2015, 64, 45–51. [Google Scholar] [CrossRef]
- Santos, S.A.; Pinto, P.C.; Silvestre, A.J.; Neto, C.P. Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L. Ind. Crops Prod. 2010, 31, 521–526. [Google Scholar] [CrossRef]
- Vattem, D.A.; Shetty, K. Biological functionality of ellagic acid: A review. J. Food Biochem. 2005, 29, 234–266. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid.-Based Complement. Altern. Med. 2013, 1, 801457. [Google Scholar] [CrossRef]
- Kabir, F.; Katayama, S.; Tanji, N.; Nakamura, S. Antimicrobial effects of chlorogenic acid and related compounds. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 359–365. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef]
- Barahuie, F.; Saifullah, B.; Dorniani, D.; Fakurazi, S.; Karthivashan, G.; Hussein, M.Z.; Elfghi, F.M. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater. Sci. Eng. C 2017, 74, 177–185. [Google Scholar] [CrossRef]
- Murai, T.; Matsuda, S. The chemopreventive effects of chlorogenic acids, phenolic compounds in coffee, against inflammation, cancer, and neurological diseases. Molecules 2023, 28, 2381. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.K.; Chopdar, K.S.; Dash, G.C.; Mohanty, A.K.; Raval, M.K. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease. J. Biomol. Struct. Dyn. 2023, 41, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Reiter, R.J. Melatonin: Roles in influenza, COVID-19, and other viral infections. Rev. Med. Virol. 2020, 30, e2109. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Rayner, D.; Ramaraju, H.B.; Abbas, U.; Garcia, C.; Heybati, K.; Moskalyk, M. Efficacy and safety of selective serotonin reuptake inhibitors in COVID-19 management: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 578–586. [Google Scholar] [CrossRef]
- Erland, L.A.; Turi, C.E.; Saxena, P.K. Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnol. Adv. 2016, 34, 1347–1361. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Z.; Tian, Z.; Sun, J.; Li, Y.; Fan, X. Validation of spectrophotometric determination of chlorogenic acid in fermentation broth and fruits. Food Chem. 2019, 278, 170–177. [Google Scholar] [CrossRef]
- Vinha, A.F.; Barreira, J.C.; Costa, A.S.; Oliveira MB, P. A new age for Quercus spp. fruits: Review on nutritional and phytochemical composition and related biological activities of acorns. Compr. Rev. Food Sci. Food Saf. 2016, 15, 947–981. [Google Scholar] [CrossRef]
- Valdiani, A.; Hansen, O.K.; Nielsen, U.B.; Johannsen, V.K.; Shariat, M.; Georgiev, M.I.; Omidvar, V.; Ebrahimi, M.; Tavakoli Dinanai, E.; Abiri, R. Bioreactor-based advances in plant tissue and cell culture: Challenges and prospects. Crit. Rev. Biotechnol. 2019, 39, 20–34. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Wu, X.; Bhagwat, S. USDA Database for the Flavonoid Content of Selected Foods; Release 3.3; US Department of Agriculture: Beltsville, MD, USA, 2018; 173p. [Google Scholar]
- Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Boo, H.O.; Heo, B.G.; Gorinstein, S.; Chon, S.U. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 2011, 181, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Soengas, P.; Rodríguez, V.M.; Velasco, P.; Cartea, M.E. Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega 2018, 3, 5237–5243. [Google Scholar] [CrossRef]
- Alhdad, G.M.; Seal, C.E.; Al-Azzawi, M.J.; Flowers, T.J. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: The role of antioxidants. Environ. Exp. Bot. 2013, 87, 120–125. [Google Scholar] [CrossRef]
- Sharma, V.; Ramawat, K.G. Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert. Biologia 2014, 69, 178–185. [Google Scholar] [CrossRef]
- Chalker-Scott, L.; Fuchigami, L.H. The role of phenolic compounds in plant stress responses. In Low Temperature Stress Physiology in Crops; CRC Press: Boca Raton, FL, USA, 2018; pp. 67–80. [Google Scholar]
- Kumar, V.; Ramakrishna, A.; Ravishankar, G.A. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell. Dev. Biol.-Plant 2007, 43, 602–607. [Google Scholar] [CrossRef]
- Coberly, L.C.; Rausher, M.D. Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids: Amelioration of heat stress. Mol. Ecol. 2003, 12, 1113–1124. [Google Scholar] [CrossRef]
- Rausher, M.D. The evolution of flavonoids and their genes. In The Science of Flavonoids; Springer: New York, NY, USA, 2006; pp. 175–211. [Google Scholar]
- Petrussa, E.; Braidot, E.; Zancani, M.; Peresson, C.; Bertolini, A.; Patui, S.; Vianello, A. Plant flavonoids—Biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 2013, 14, 14950–14973. [Google Scholar] [CrossRef]
- Çakırlar, H.; Çiçek, N.; Fedina, I.; Georgieva, K.; Doğru, A.; Velitchkova, M. NaCl induced cross-acclimation to UV-B radiation in four Barley (Hordeum vulgare L.) cultivars. Acta Physiol. Plant. 2008, 30, 561–567. [Google Scholar] [CrossRef]
- Antognoni, F.; Zheng, S.; Pagnucco, C.; Baraldi, R.; Poli, F.; Biondi, S. Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia 2007, 78, 345–352. [Google Scholar] [CrossRef]
- Ryan, K.G.; Swinny, E.E.; Markham, K.R.; Winefield, C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 2002, 59, 23–32. [Google Scholar] [CrossRef]
- Cantos, E.; Espín, J.C.; López-Bote, C.; de la Hoz, L.; Ordóñez, J.A.; Tomás-Barberán, F.A. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. J. Agric. Food Chem. 2003, 51, 6248–6255. [Google Scholar] [CrossRef]
- Daniel, E.M.; Krupnick, A.S.; Heur, Y.H.; Blinzler, J.A.; Nims, R.W.; Stoner, G.D. Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J. Food Compos. Anal. 1989, 2, 338–349. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.H.; Kärenlampi, S.O.; Mykkänen, H.M.; Heinonen, I.M.; Törrönen, A.R. Ellagic acid content in berries: Influence of domestic processing and storage. Eur. Food Res. Technol. 2000, 212, 75–80. [Google Scholar] [CrossRef]
- Gumienna, M.; Szwengiel, A.; Górna, B. Bioactive components of pomegranate fruit and their transformation by fermentation processes. Eur. Food Res. Technol. 2016, 242, 631–640. [Google Scholar] [CrossRef]
- Fujioka, K.; Shibamoto, T. Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem. 2008, 106, 217–221. [Google Scholar] [CrossRef]
- Feldman, J.M.; Lee, E.M. Serotonin content of foods: Effect on urinary excretion of 5-hydroxyindoleacetic acid 1 3. Am. J. Clin. Nutr. 1985, 42, 639–643. [Google Scholar] [CrossRef]
- Ravishankar, G.A.; Ramakrishna, A. (Eds.) Serotonin and Melatonin: Their Functional Role in Plants, Food, Phytomedicine, and Human Health; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Grobe, W. Function of serotonin in seeds of walnuts. Phytochemistry 1982, 21, 819–822. [Google Scholar] [CrossRef]
- Kaur, H.; Mukherjee, S.; Baluska, F.; Bhatla, S.C. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants. Plant Signal. Behav. 2015, 10, e1049788. [Google Scholar] [CrossRef]
- Bueno, M.A.; Manzanera, J.A. Primeros ensayos de inducción de embriones somáticos de Quercus suber L. Sci. Gerund. 1992, 18, 29–37. [Google Scholar]
- Gomez-Garay, A.; Manzanera, J.A.; Pintos-Lopez, B. Embryogenesis in Oak species. A review. For. Syst. 2014, 23, 191–198. [Google Scholar] [CrossRef]
- Sommer, H.E.; Brown, C.L.; Kormanik, P.P. Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot. Gaz. 1975, 136, 196–200. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset CL, W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lock, O.; Cabello, I.; Doroteo, V.H. Analysis of Flavonoids in Plants; Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú: Lima, Peru, 2006. [Google Scholar]
- Jin, Q.; Shan, L.; Yue, J.; Wang, X. Spectrophotometric determination of total serotonin derivatives in the safflower seeds with Ehrlich’s reagent and the underlying color reaction mechanism. Food Chem. 2008, 108, 779–783. [Google Scholar] [CrossRef]
Abiotic Stress Treatment | Antioxidant Activity (% DPPH Reduction) | Total Phenolic Content (mg Gallic acid/g DW) | Total Flavonoid Content (mg quercetin/g DW) |
---|---|---|---|
Control | 68.09 ± 3.99 | 173.80 ± 9.77 | 2.42 ± 0.21 |
35 °C | 83.19 ± 1.87 * | 157.7 ± 10.30 | 3.35 ± 0.15 * |
UV | 71.73 ± 3.98 | 180.98 ± 5.68 | 4.14 ± 0.18 ** |
NaCl 50 mM | 81.86 ± 1.87 * | 150.10 ± 7.33 | 2.14 ± 0.17 |
NaCl 200 mM | NQ | NQ | NQ |
Cerium 100 mg/L | 68.28 ± 1.71 | 168.17 ± 9.21 | 2.54 ± 0.34 |
Cerium 200 mg/L | 71.80 ± 2.93 | 181.59 ± 4.29 | 2.67 ± 0.31 |
Abiotic Stress Treatment | |||||||
---|---|---|---|---|---|---|---|
Control | 35 °C | UV | NaCl 50 mM | NaCl 200 mM | Nanoceria 100 mg/L | Nanoceria 200 mg/L | |
Chlorogenic Acid Presence (Prussian blue) | + | + | + | + | + | + | + |
Serotonin Presence | + | + | + | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, B.P.; Manzanera, J.A.; Pérez-Urria, E.; Jiménez, C.; Montoro, A.; Gomez-Garay, A. Enhanced Production of Therapeutic Metabolites in Cork-Oak Somatic Embryos under Abiotic Stress Conditions. Stresses 2024, 4, 546-557. https://doi.org/10.3390/stresses4030035
López BP, Manzanera JA, Pérez-Urria E, Jiménez C, Montoro A, Gomez-Garay A. Enhanced Production of Therapeutic Metabolites in Cork-Oak Somatic Embryos under Abiotic Stress Conditions. Stresses. 2024; 4(3):546-557. https://doi.org/10.3390/stresses4030035
Chicago/Turabian StyleLópez, Beatriz Pintos, José Antonio Manzanera, Elena Pérez-Urria, Carlos Jiménez, Alba Montoro, and Arancha Gomez-Garay. 2024. "Enhanced Production of Therapeutic Metabolites in Cork-Oak Somatic Embryos under Abiotic Stress Conditions" Stresses 4, no. 3: 546-557. https://doi.org/10.3390/stresses4030035
APA StyleLópez, B. P., Manzanera, J. A., Pérez-Urria, E., Jiménez, C., Montoro, A., & Gomez-Garay, A. (2024). Enhanced Production of Therapeutic Metabolites in Cork-Oak Somatic Embryos under Abiotic Stress Conditions. Stresses, 4(3), 546-557. https://doi.org/10.3390/stresses4030035