Zerovalent Iron Modulates the Influence of Arsenic-Contaminated Soil on Growth, Yield and Grain Quality of Rice
Abstract
:1. Introduction
2. Results
2.1. Effect of Zerovalent Iron on Plant Growth
2.2. Effect of Zerovalent Iron on Grain Yield
2.3. Effect of Zerovalent Iron on Grain Phosphorus, Potassium, Zinc, Manganese, and Iron Content
2.4. Effect of Zerovalent Iron on Grain Arsenic
2.5. Effect of Zerovalent Iron on Soil Iron and Arsenic Concentration
2.6. Effect of Zerovalent Iron on Soil Bacterial Colony-Forming Unit
3. Discussion
4. Materials and Methods
4.1. Experimental Materials and Treatments
4.2. Crop Husbandry
4.3. Observation of Morphological Parameters
4.4. Plant Sampling and Chemical Analysis of Plant Samples
4.4.1. Plant Sampling
4.4.2. Chemical Analysis of Grain Samples
Phosphorus and Potassium in Grain
Determination of Zinc, Manganese and Iron in Grain
Determination of Arsenic in Grain
4.4.3. Measurement of Arsenic Uptake
4.5. Soil Sampling and Chemical Analysis of Soil Samples
4.5.1. Soil Sampling
4.5.2. Chemical Analysis of Soil Samples
Determination of Iron
Determination Total Arsenic
4.6. Microbial Population Estimation
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anthony, W.H.; Mandy, G.D.; Danjuma, S.S. Determination of Arsenic Content in Different Brands of Rice Sold in Port Harcourt, Nigeria. Eur. J. Nut. Food Saf. 2019, 9, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, A. Spatial Analysis of Arsenic Contamination of Groundwater around the World and India. Int. J. Innov. Stud. Soc. Hum. 2019, 4, 6–15. [Google Scholar]
- Chowdhury, M.T.A.; Deacon, C.M.; Jones, G.D.; Huq, S.I.; Williams, P.N.; Hoque, A.M.; Meharg, A.A. Arsenic in Bangladeshi soils related to physiographic region, paddy management, and mirco-and macro-elemental status. Sci. Total Environ. 2017, 590, 406–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BBS (Bangladesh Bureau of Statistics). Statistical Year Book of Bangladesh; Statistics and Information Division, Ministry of Planning, Government of the Peoples Republic of Bangladesh: Dhaka, Bangladesh, 2012; ISBN 978-984-90055-9-9.
- Panaullah, G.M.; Alam, T.; Hossain, M.B.; Oeppert, R.H.L.; Lauren, J.G.; Meisner, C.A.; Ahmed, Z.U.; Duxbury, J.M. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 2009, 317, 31–39. [Google Scholar] [CrossRef]
- Heikens, A.; Panaullah, G.M.; Meharg, A.A. Arsenic behaviour from groundwater and soil to crops: Impacts on agriculture and food safety. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 43–87. [Google Scholar]
- Chowdhury, M.T.A.; Deacon, C.M.; Steel, E.; Huq, S.I.; Paton, G.I.; Price, A.H.; Norton, G.J. Physiographical variability in arsenic dynamics in Bangladeshi soils. Sci. Total Environ. 2018, 612, 1365–1372. [Google Scholar] [CrossRef]
- Austruy, A.; Wanat, N.; Moussard, C.; Vernay, P.; Joussein, E.; Ledoigt, G.; Hitmi, A. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba. Ecotoxicol. Environ. Saf. 2013, 90, 28–34. [Google Scholar] [CrossRef]
- Das, H.K.; Mitra, A.K.; Sengupta, P.K.; Hossain, A.; Islam, F.; Rabbani, G.H. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environ. Int. 2004, 30, 383–387. [Google Scholar] [CrossRef]
- Hironaka, H.; Ahmad, S.A. Arsenic Concentration of Rice in Bangladesh. Fate of Arsenic in the Environment; Bangladesh University of Engineering and Technology: Dhaka, Bangladesh, 2003; pp. 123–130. [Google Scholar]
- Abedi, T.; Mojiri, A. Arsenic uptake and accumulation mechanisms in rice species. Plants 2020, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Zou, J.; Luo, Y.; Li, J.; Li, X.; Liao, T.; Lin, G. Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron. Chem. Eng. J. 2019, 375, 121928. [Google Scholar]
- Watanabe, T.; Murata, Y.; Nakamura, T.; Sakai, Y.; Osaki, M. Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils. J. Plant Nutr. 2009, 32, 1164–1172. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 2020, 10, 917. [Google Scholar] [CrossRef]
- Comba, S.; Di Molfetta, A.; Sethi, R. A comparison between field applications of nano, micro, and millimetric zero valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut. 2011, 215, 595–607. [Google Scholar] [CrossRef]
- Gheju, M. Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut. 2011, 222, 103–148. [Google Scholar] [CrossRef]
- Jeen, S.W.; Gillham, R.W.; Przepiora, A. Predictions of long term performance of granular iron permeable reactive barriers: Field-scale evaluation. J. Contam. Hydrol. 2011, 23, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Guan, X.; Lo, I.M. Fate of As (V)-treated nano zero-valent iron: Determination of arsenic desorption potential under varying environmental conditions by phosphate extraction. Water Res. 2012, 4613, 4071–4080. [Google Scholar]
- An, B.; Zhao, D. Immobilization of As (III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. J. Hazard. Mat. 2012, 211, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Hussain, F.; Anwar, Z.; Khattak, J.Z.K.; Ishaque, M. Effects of iron on the wheat crop (Triticum aestivum L.) by uptake of nitrogen, phosphorus and potassium. Asian J. Agric. Sci. 2012, 4, 229–235. [Google Scholar]
- Yoon, H.; Kang, Y.G.; Chang, Y.S.; Kim, J.H. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana. Nanomaterials 2019, 9, 1543. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Hussain, M. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Mehraban, P.; Zadeh, A.A.; Sadeghipour, H.R. Iron toxicity in rice (Oryza sativa L.): Under different potassium nutrition. Asian J. Plant Sci. 2008, 7, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Zeng, M.; Lei, M.; Liao, B.; Zhou, H. Effect of Zero-Valent Iron on Arsenic Uptake by Rice (Oryza sativa L.) and its Relationship with Iron, Arsenic, and Phosphorus in Soil and Iron Plaque. Water Air Soil Pollut. 2020, 231, 1–11. [Google Scholar] [CrossRef]
- Chong, W.; Hai-Nan, K.; Xin-Ze, W.; Hao-Dong, W.U.; Yan, L.; Sheng-Bing, H. Effects of iron on growth and intracellular chemical contents of Microcystis aeruginosa. Biomed. Environ. Sci. 2010, 23, 48–52. [Google Scholar]
- Wang, J.; Fang, Z.; Cheng, W.; Yan, X.; Tsang, P.E.; Zhao, D. Higher concentrations of nanoscale zero valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ. Pollut. 2016, 210, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Libralato, G.; Devoti, A.C.; Zanella, M.; Sabbioni, E.; Mičetić, I.; Manodori, L.; Ghirardini, A.V. Phytotoxicity of ionic, micro-and nano-sized iron in three plant species. Ecotoxicol. Environ. Saf. 2016, 123, 81–88. [Google Scholar] [CrossRef]
- Bag, A.G.; Nandi, R.; Chatterjee, N.; Dolui, S.; Hazra, G.C.; Ghosh, M. Toxicity of arsenic on germination and seedling growth of indigenous aromatic rice varieties of India. Int. J. Chem. Sci. 2019, 7, 2889–2896. [Google Scholar]
- Fageria, N.K.; Rabelo, N.A. Tolerance of rice cultivars to iron toxicity. J. Plant Nutr. 2008, 10, 653–661. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Maki, T.; Lim, R.P. Effect of iron (Fe2+) concentration in soil on arsenic uptake in rice plant (Oryza sativa L.) when grown with arsenate [As (V)] and dimethylarsinate (DMA). Water Air Soil Pollut. 2013, 224, 1623. [Google Scholar] [CrossRef] [Green Version]
- Makino, T.; Nakamura, K.; Katou, H.; Ishikawa, S.; Ito, M.; Honma, T.; Miyazaki, N.; Takehisa, K.; Sano, S.; Matsumoto, S.; et al. Simultaneous decrease of arsenic and cadmium in rice (Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials. Soil Sci. Plant Nut. 2016, 62, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.T.; Lahner, B.; Yakubova, E.; Salt, D.E.; Raghothama, K.G. The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol. 2008, 147, 1181–1191. [Google Scholar] [CrossRef] [Green Version]
- Guha, T.; Ravikumar, K.V.G.; Mukherjee, A.; Mukherjee, A.; Kundu, R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol. Biochem. 2018, 127, 403–413. [Google Scholar]
- Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A.J.; Ma, C.; Bai, T.; Hao, Y.; Rui, Y. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollut. 2021, 269, 116134. [Google Scholar] [CrossRef]
- Rasul, G.A.M.; Mustafa Salam, M.; Rashid, B.R. Effect of iron application to calcareous soil on growth and yield of wheat in Sulaimani, Governorate-Kurdistan-Iraq. Am. Eur. J. Agric. Environ. Sci. 2015, 15, 1552–1555. [Google Scholar]
- Gil-Díaz, M.; Lobo, M.C. Phytotoxicity of Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2018; pp. 301–333. [Google Scholar]
- Vítková, M.; Rákosová, S.; Michálková, Z.; Komárek, M. Metal (loid) s behaviour in soils amended with nano zero-valent iron as a function of pH and time. J. Environ. Manag. 2017, 186, 268–276. [Google Scholar] [CrossRef]
- Brar, M.; Sekhon, G. Interaction of zinc with other micronutrient cations: Ii. effect of iron on zinc absorption by rice seedlings and its translocation within the plants. Plant Soil 1976, 45, 145–150. [Google Scholar] [CrossRef]
- Boonyaves, K.; Wu, T.Y.; Gruissem, W.; Bhullar, N.K. Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front. Plant Sci. 2017, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Ai-Qing, Z.; Qiong-Li, B.; Xiao-Hong, T.; Xin-Chun, L.; Gale William, J. Combined effect of iron and zinc on micronutrient levels in wheat (Triticum aestivum L.). J. Environ. Biol. 2011, 32, 235–239. [Google Scholar]
- Alam, S.M. Effects of iron and manganese on the growth of rice and on the contents of these elements in rice plants. Agronomie EDP Sci. 1985, 5, 487–490. [Google Scholar] [CrossRef]
- Lien, H.L.; Wilkin, R.T. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere 2005, 59, 377–386. [Google Scholar] [CrossRef]
- Park, H.; Kanel, S.R.; Choi, H. Arsenic removal by nano-scale zero valent iron and how it is affected by natural organic matter. Environ. Appl. Nanoscale Microscale React. Met. Part. 2009, 1027, 135–161. [Google Scholar]
- Su, C.; Puls, R.W. Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 2001, 35, 1487–1492. [Google Scholar] [CrossRef]
- Morrison, S.J.; Metzler, D.R.; Dwyer, B.P. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero valent iron in a passive treatment cell: Reaction progress modeling. J. Contamin. Hydrol. 2002, 56, 99–116. [Google Scholar] [CrossRef]
- Irem, S.; Islam, E.; Maathuis, F.J.; Niazi, N.K.; Li, T. Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: Effect of soil amendments. Chemosphere 2019, 225, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Vítková, M.; Puschenreiter, M.; Komárek, M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal (loid) contaminated soils. Chemosphere 2018, 200, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Kasuga, J.; Makino, T.; Arao, T. Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environ. Exp. Bot. 2016, 125, 42–51. [Google Scholar] [CrossRef]
- Chaithawiwat, K.; Vangnai, A.; McEvoy, J.M.; Pruess, B.; Krajangpan, S.; Khan, E. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere 2016, 144, 352–359. [Google Scholar] [CrossRef]
- Tang, K.W.; Grossart, H.P. Iron effects on colonization behavior, motility, and enzymatic activity of marine bacteria. Can. J. Microbiol. 2007, 53, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Jee, Y.K.; Won, I.L.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008, 42, 4927–4933. [Google Scholar] [CrossRef] [Green Version]
- Saccà, M.L.; Fajardo, C.; Costa, G.; Lobo, C.; Nande, M.; Martin, M. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere 2014, 104, 184–189. [Google Scholar] [CrossRef] [PubMed]
- El-Temsah, Y.S.; Sevcu, A.; Bobcikova, K.; Cernik, M.; Joner, E.J. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 2016, 144, 2221–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlett, M.; Ritz, K.; Dorey, R.A.; Rocks, S.; Ramsden, J.; Harris, J.A. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environm. Sci. Pollut. Res. 2013, 20, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Brammer, H. Rice Soils of Bangladesh; IRRI: Manila, Philippines, 1978; pp. 35–55. [Google Scholar]
- BARC. Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2012.
- Piper, C.S. Soil and Plant Analysis; Hans Publishers: Bombay, India, 1966; pp. 223–237. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall India Private Limited: New Delhi, India, 1973; p. 128. [Google Scholar]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; Food and Agriculture Organization of United Nations: Rome, Italy, 2008; p. 19. [Google Scholar]
- Schwertmann, U. Differentiation of the iron oxides in the soil by extraction with ammonium oxalate solution. J. Plant Nutr. Fert. Soil Sci. 1964, 105, 194–202. [Google Scholar]
- McKeague, J.A.; Day, J. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 1966, 46, 13–22. [Google Scholar] [CrossRef]
- Jacobs, L.W.; Keeney, D.R.; Walsh, L.M. Arsenic residue toxicity to vegetable crops grown on Plainfield sand. Agron. J. 1970, 62, 588–591. [Google Scholar] [CrossRef]
- Loeppert, R.H.; Biswas, B.K. Methods of Analysis for Soil Arsenic; Texas A & M University: College Station, TX, USA, 2002. [Google Scholar]
- Khan, M.M.A.; Haque, E.; Paul, N.C.; Khaleque, M.A.; Al-Garni, S.M.; Rahman, M.; Islam, M.T. Enhancement of growth and grain yield of rice in nutrient deficient soils by rice probiotic bacteria. Rice Sci. 2017, 24, 264–273. [Google Scholar] [CrossRef]
- Sarker, A.; Talukder, N.M.; Islam, M.T. Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Sci. Today. 2014, 1, 86–93. [Google Scholar] [CrossRef]
- CoStat. CoStat-Statistics Software; Version 6.400; CoHort Software: Monterey, CA, USA, 2008. [Google Scholar]
Treatment | Plant Height (cm) | Shoot Dry wt. (g) after Harvesting | Root Dry wt. (g) after Harvesting | No. of Tiller per Hill at 50 DAP | No. of Effective Tiller per Hill at 50 DAP | |
---|---|---|---|---|---|---|
As0 | ZVI0 | 85.60 ± 1.33a | 47.33 ± 1.66a | 15.67 ± 0.76ab | 27.67 ± 1.78a | 27.33 ± 1.19a |
ZVI0.5 | 85.77 ± 1.33a | 46.33 ± 3.78a | 20.00 ± 1.41ab | 25.00 ± 2.83ab | 25.00 ± 2.83ab | |
ZVI1.0 | 84.33 ± 1.34ab | 44.67 ± 2.13ab | 29.00 ± 1.25a | 24.67 ± 0.72ab | 24.67 ± 0.72abc | |
ZVI1.5 | 83.00 ± 1.27abc | 36.67 ± 3.53abc | 18.00 ± 1.25ab | 18.67 ± 2.23a–d | 18.33 ± 2.33a–d | |
As20 | ZVI0 | 83.00 ± 1.31abc | 32.67 ± 1.09bcd | 11.67 ± 0.72b | 20.33 ± 0.98a–d | 20.33 ± 0.98a–d |
ZVI0.5 | 82.73 ± 1.21abc | 28.33 ± 3.60cd | 12.67 ± 0.72ab | 16.33 ± 3.14a–d | 16.00 ± 2.94a–d | |
ZVI1.0 | 82.23 ± 0.74abc | 25.33 ± 1.19cd | 15.00 ± 0.94ab | 13.33 ± 2.76bcd | 13.33 ± 2.76bcd | |
ZVI1.5 | 83.73 ± 0.71ab | 22.33 ± 0.98d | 12.00 ± 0.47ab | 12.00 ± 2.94d | 12.00 ± 2.94d | |
As40 | ZVI0 | 77.10 ± 0.68c | 20.67 ± 0.27d | 6.00 ± 0.47b | 16.33 ± 1.66a–d | 16.33 ± 1.66a–d |
ZVI0.5 | 78.53 ± 0.24bc | 24.33 ± 1.44cd | 7.00 ± 0.47b | 12.33 ± 0.27cd | 12.33 ± 0.27cd | |
ZVI1.0 | 81.33 ± 0.36abc | 22.00 ± 1.41d | 9.00 ± 0.47b | 10.33 ± 0.54d | 10.33 ± 0.54d | |
ZVI1.5 | 81.33 ± 0.36abc | 19.33 ± 0.98d | 8.00 ± 0.47b | 10.00 ± 1.25d | 9.67 ± 1.89d |
Treatment | Grain Dry Weight (g plant−1) | Thousand Grain Weight (g) | |
---|---|---|---|
As0 | ZVI0 | 64.25 ± 1.27ab | 12.25 ± 0.27a |
ZVI0.5 | 71.43 ± 5.24a | 13.02 ± 0.27a | |
ZVI1.0 | 52.53 ± 5.12abc | 12.83 ± 0.44a | |
ZVI1.5 | 49.53 ± 10.11abc | 13.55 ± 0.56a | |
As20 | ZVI0 | 42.47 ± 1.19bcd | 11.13 ± 0.77a |
ZVI0.5 | 42.82 ± 2.37bcd | 13.00 ± 0.52a | |
ZVI1.0 | 37.12 ± 3.18cde | 10.78 ± 1.27a | |
ZVI1.5 | 24.05 ± 0.35de | 11.23 ± 0.47a | |
As40 | ZVI0 | 34.42 ± 3.21cde | 10.98 ± 1.20a |
ZVI0.5 | 30.00 ± 1.07cde | 12.10 ± 0.19a | |
ZVI1.0 | 22.58 ± 0.86de | 13.60 ± 0.17a | |
ZVI1.5 | 17.07 ± 1.82e | 12.83 ± 0.31a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akter, S.; Rahman, G.K.M.M.; Hasanuzzaman, M.; Alam, Z.; Watanabe, T.; Islam, T. Zerovalent Iron Modulates the Influence of Arsenic-Contaminated Soil on Growth, Yield and Grain Quality of Rice. Stresses 2021, 1, 90-104. https://doi.org/10.3390/stresses1020008
Akter S, Rahman GKMM, Hasanuzzaman M, Alam Z, Watanabe T, Islam T. Zerovalent Iron Modulates the Influence of Arsenic-Contaminated Soil on Growth, Yield and Grain Quality of Rice. Stresses. 2021; 1(2):90-104. https://doi.org/10.3390/stresses1020008
Chicago/Turabian StyleAkter, Sanjida, Golum Kibria Muhammad Mustafizur Rahman, Mirza Hasanuzzaman, Zakaria Alam, Toshihiro Watanabe, and Tofazzal Islam. 2021. "Zerovalent Iron Modulates the Influence of Arsenic-Contaminated Soil on Growth, Yield and Grain Quality of Rice" Stresses 1, no. 2: 90-104. https://doi.org/10.3390/stresses1020008
APA StyleAkter, S., Rahman, G. K. M. M., Hasanuzzaman, M., Alam, Z., Watanabe, T., & Islam, T. (2021). Zerovalent Iron Modulates the Influence of Arsenic-Contaminated Soil on Growth, Yield and Grain Quality of Rice. Stresses, 1(2), 90-104. https://doi.org/10.3390/stresses1020008