Experimental Investigation of Enhanced Bearing Capacity Due to Vibration on Loose Soils Under Low-Atmospheric-Pressure Conditions †
Abstract
1. Introduction
1.1. Current Trends in Lunar and Planetary Exploration
1.2. Overview of Mobility Systems of Rovers for Extraterrestrial Body Exploration
1.3. Introduction to Our Previous Research
1.4. Research Overview
2. Methods
2.1. Explanation of Increasing Bearing Capacity by Vibration
2.2. Introduction to the Related Research
2.3. Experiments
3. Results and Discussion
3.1. Experimental Results Using Silica No.5
3.2. Experimental Results Using Toyoura Sand
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simon, J.I.; Hickman-Lewis, K.; Cohen, B.A.; Mayhew, L.E.; Shuster, D.L.; Debaille, V.; Hausrath, E.M.; Weiss, B.P.; Bosak, T.; Zorzano, M.-P.; et al. Samples Collected from the Floor of Jezero Crater with the Mars 2020 Perseverance Rover. J. Geophys. Res. Planets 2023, 128, e2022JE007474. [Google Scholar] [CrossRef]
- Wang, B.-W.; Zhang, Q.W.L.; Chen, Y.; Zhao, W.; Liu, Y.; Tang, G.-Q.; Ma, H.-X.; Su, B.; Hui, H.; Delano, J.W.; et al. Returned samples indicate volcanism on the Moon 120 million years ago. Science 2024, 385, 1077–1080. [Google Scholar] [CrossRef]
- NASA. NASA Outlines Lunar Surface Sustainability Concept. Available online: https://www.nasa.gov/general/nasa-outlines-lunar-surface-sustainability-concept/?utm_source=chatgpt.com (accessed on 25 June 2025).
- NASA. About CHAPEA. Available online: https://www.nasa.gov/humans-in-space/chapea/about-chapea/ (accessed on 25 June 2025).
- Sánchez-Lavega, A.; Del Rio-Gaztelurrutia, T.; Hueso, R.; Juárez, M.T.; Martínez, G.M.; Harri, A.M.; Genzer, M.; Hieta, M.; Polkko, J.; Rodríguez-Manfredi, J.A.; et al. Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements. J. Geophys. Res. Planets 2023, 128, e2022JE007480. [Google Scholar] [CrossRef] [PubMed]
- Di, K.; Zhu, M.-H.; Yue, Z.; Lin, Y.; Wan, W.; Liu, Z.; Gou, S.; Liu, B.; Peng, M.; Wang, Y.; et al. Topographic Evolution of Von Kármán Crater Revealed by the Lunar Rover Yutu-2. Geophys. Res. Lett. 2019, 46, 12764–12770. [Google Scholar] [CrossRef]
- NASA Science, Spirit. Available online: https://science.nasa.gov/mission/mer-spirit/ (accessed on 25 June 2025).
- Wilcox, B.H. ATHLETE: A Limbed Vehicle for Solar System Exploration. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012. [Google Scholar] [CrossRef]
- Spiridonov, A.; Buehler, F.; Berclaz, M.; Schelbert, V.; Geurts, J.; Krasnova, E.; Steinke, E.; Toma, J.; Wuethrich, J.; Polat, R.; et al. SpaceHopper: A Small-Scale Legged Robot for Exploring Low-Gravity Celestial Bodies. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024. [Google Scholar] [CrossRef]
- Watanabe, T.; Iizuka, K. Proposal of walking to reduce slipping behavior using the compaction effect of loose soil caused by propagation of vibration for small light lunar planetary exploration rovers with legs. Trans. JSME 2020, 86. [Google Scholar] [CrossRef]
- Watanabe, T.; Higashiyama, R.; Watanabe, D.; Iizuka, K. Analyzing bearing capacity changes due to vibration in discrete element method simulations. J. Terramech 2025, 118. [Google Scholar] [CrossRef]
- Wada, S.; Kouda, M.; Enami, A. Experimental Study on Passive Earth Pressure Part 1: The Experimental Device and An Example of Passive Earth Pressure Tests by the Device. J. Str. Con. Eng. 1998, 63, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice; Read Books Limited: Redditch, UK, 2010. [Google Scholar]
- Gao, C.; Du, G.; Liu, S.; He, H.; Zhang, D. The microscopic mechanisms of treating collapsible loess with vibratory probe compaction method. Transp. Geotech. 2021, 27, 100492. [Google Scholar] [CrossRef]
- Pistrol, J.; Hager, M.; Kopf, F.; Adam, D. An advanced ICMV for vibratory roller compaction. Acta Geotech. 2024, 20, 501–517. [Google Scholar] [CrossRef]
- Higashiyama, R.; Watanabe, T.; Iizuka, K.; Watanabe, D. Simulation of distinct element method to analyses of increased supporting force by imparting vibration for improving walking performance of lunar exploration legged rover. In Proceedings of the JSME Annual Conference on Robotics and Mechatronics, Nagoya, Japan, 28 June–1 July 2023. [Google Scholar] [CrossRef]
- Sutoh, M. Traveling performance analysis of planetary rovers using a repeatable test system in vacuum. J. Terramech. 2021, 95, 15–24. [Google Scholar] [CrossRef]
- Reiss, P.; Hager, P.; Hoehn, A.; Rott, M.; Walter, U. Flowability of lunar regolith simulants under reduced gravity and vacuum in hopper-based conveying devices. J. Terramech. 2014, 55, 61–72. [Google Scholar] [CrossRef]
- Sakatani, N.; Ogawa, K.; Arakawa, M.; Tanaka, S. Thermal conductivity of lunar regolith simulant JSC-1A under vacuum. Icarus 2018, 309, 13–24. [Google Scholar] [CrossRef]
- Yeomans, B.; Saaj, C.M.; Winnendael, M.V. Walking planetary rovers: Experimental analysis and modelling of leg thrust in loose granular soils. J. Terramech 2013, 50, 107–120. [Google Scholar] [CrossRef]
- Yeomans, B.; Saaj, C.M. Towards terrain interaction prediction for bioinspired planetary exploration rovers. Bio. Bio. 2014, 9, 016009. [Google Scholar] [CrossRef] [PubMed]
- Kitanihon Corporation. Touhokukeisa Data. Available online: https://www.ktsangyo.co.jp/data1.htm?utm_source=chatgpt.com (accessed on 27 July 2025).
- Shigeta, Y.; Aruga, K.; Tate, Y.; Nitami, T.; Kobayashi, H. Application of 3D Distinct Element Method to Track Shoe Model. J. Jpn. For. Eng. Soc. 2005, 19, 295–300. [Google Scholar] [CrossRef]
- TOYOURA KEISEKI KOGYO, K.K. Company Information. Available online: https://www.toyourakeiseki.com/about.html (accessed on 25 June 2025).
- Mori, D.; Ishigami, G. Excavation Model of soil sampling device based on particle image velocimetry. J. Terramech. 2015, 62, 19–29. [Google Scholar] [CrossRef]
- Shirai, T.; Ishigami, G. Development of in-wheel sensor system for accurate measurement of wheel–terrain interaction characteristics. J. Terramech. 2015, 62, 51–61. [Google Scholar] [CrossRef]
- Kobayashi, T.; Fujiwara, Y.; Yamakawa, J.; Yasufuku, N.; Omine, K. Mobility performance of a rigid wheel in low-gravity environments. J. Terramech 2010, 47, 261–274. [Google Scholar] [CrossRef]
- Ono, S.; Namikawa, S.; Yoshida, K. Analysis of soil flow and traction mechanics for lunar overs over different types of soils using particle image velocimetry. J. Terramech 2021, 95, 89–100. [Google Scholar] [CrossRef]
- Oe, A.; Nishida, S.; Nakatani, S. Study of passive steering mechanism for small Martian surface exploration rovers. J. Terramech 2024, 112, 35–43. [Google Scholar] [CrossRef]
Item | Silica No.5 [11,22] | Toyoura Sand [23,24] |
---|---|---|
Size of particle | 106–600 | 106–300 |
Density | 1490 | 1400 |
Internal friction angle | 40.2 | 30.2 |
Related research that uses the soil as the simulated one of exterraserestial bodies | Mori and Ishigami (2015) [25], Shirai and Ishigami (2015) [26], Sutoh (2021) [17] | Kobayashi (2021) [27], Ono (2021) [28], Oe (2024) [29] |
Item | Condition (Value) |
---|---|
Vacuum chamber | 1-5800-01, AZ ONE Corp., Osaka City, Japan |
Vacuum pump | TA150SW-K, Ichinen TASCO Co., Ltd., Osaka City, Japan |
Vibration motor | TP-2528C-24, Three Peace Co., Ltd., Kobe City, Japan |
Force sensor | Load cell SC133-2kg, Sensor and Control Co., Ltd., Fuzhou, China |
Type of sand | Silica No.5 and Toyoura sand |
Item | Condition (Value) |
---|---|
Number of trials | 5 |
Sinkage of the rod | 30 mm |
Dragged speed | 1.67 mm/s |
Dragged time | 30 s |
Supply voltage for vibration motor | 30 V |
Vibration time | 30 s |
Vibration force | 11.9 N |
Vibration frequency | 233 Hz |
Atmospheric pressure | Standard atmosphere (1013 hPa), Low atmosphere (13 hPa) |
Condition | Value |
---|---|
Without vibration | 0.185 N |
With vibration | 0.274 N |
Condition | Value |
---|---|
Without vibration | 0.197 N |
With vibration | 0.898 N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, T.; Higashiyama, R.; Iizuka, K. Experimental Investigation of Enhanced Bearing Capacity Due to Vibration on Loose Soils Under Low-Atmospheric-Pressure Conditions. Geotechnics 2025, 5, 54. https://doi.org/10.3390/geotechnics5030054
Watanabe T, Higashiyama R, Iizuka K. Experimental Investigation of Enhanced Bearing Capacity Due to Vibration on Loose Soils Under Low-Atmospheric-Pressure Conditions. Geotechnics. 2025; 5(3):54. https://doi.org/10.3390/geotechnics5030054
Chicago/Turabian StyleWatanabe, Tomohiro, Ryoma Higashiyama, and Kojiro Iizuka. 2025. "Experimental Investigation of Enhanced Bearing Capacity Due to Vibration on Loose Soils Under Low-Atmospheric-Pressure Conditions" Geotechnics 5, no. 3: 54. https://doi.org/10.3390/geotechnics5030054
APA StyleWatanabe, T., Higashiyama, R., & Iizuka, K. (2025). Experimental Investigation of Enhanced Bearing Capacity Due to Vibration on Loose Soils Under Low-Atmospheric-Pressure Conditions. Geotechnics, 5(3), 54. https://doi.org/10.3390/geotechnics5030054