Increased Microbially Induced Calcium Carbonate Precipitation (MICP) Efficiency in Multiple Treatment Sand Biocementation Processes by Augmentation of Cementation Medium with Ammonium Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture
2.2. MICP Batch Test
2.3. Columns Test
2.3.1. Materials
2.3.2. Preparation of Cementation Medium
2.3.3. Column Assembly
2.3.4. Bioaugmentation and CM Treatments
2.3.5. Measurement of Conductivity, pH of Effluent and Bacterial Fixing Effectiveness
2.3.6. Geochemical Analysis—Calcium Ion Concentration
2.3.7. Colorimetric Determination of Ammonium Ion Concentration
2.3.8. Quantification of Calcium Carbonate Precipitate
2.3.9. Unconfined Compressive Strength Testing
3. Results and Discussion
3.1. Batch Test Results
3.2. Columns Study
3.2.1. Material Properties
3.2.2. Bacterial Fixation and Initial Activity
3.2.3. Distribution of Bacterial Activity
3.2.4. Efficiency of Chemical Conversion
3.2.5. Unconfined Compressive Strength
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, J.; Wu, J.-X.; Zhang, K.; Shahin, M.A.; Cheng, L. Comparison between MICP-Based Bio-Cementation Versus Traditional Portland Cementation for Oil-Contaminated Soil Stabilisation. Sustainability 2022, 15, 434. [Google Scholar] [CrossRef]
- Al-Rawas, A.; Hassan, H.F.; Taha, R.; Hago, A.; Al-Shandoudi, B.; Al-Suleimani, Y. Stabilization of oil-contaminated soils using cement and cement by-pass dust. Manag. Environ. Qual. Int. J. 2005, 16, 670–680. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- UN Environment. Greening Cement Production Has a Big Role to Play in Reducing Greenhouse Gas Emissions-UNEP Global Environmental Alert Service (GEAS)—November 2010. UNEP—UN Environment Programme, 16 September 2017. Available online: http://www.unep.org/resources/report/greening-cement-production-has-big-role-play-reducing-greenhouse-gas-emissions (accessed on 24 September 2023).
- Portland Cement Association. Soil-Cement Construction Handbook; Portland Cement Association: Skokie, IL, USA, 1995. [Google Scholar]
- Hamed Khodadadi, T.; Kavazanjian, E.; van Paassen, L.; DeJong, J. Bio-Grout Materials: A Review. Grouting 2017, 1–12. [Google Scholar] [CrossRef]
- Arp, G.; Reimer, A.; Reitner, J. Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans. Science 2001, 292, 1701–1704. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.G.O.; Gomez, M.G. Dissolution Behavior of Ureolytic Biocementation: Physical Experiments and Reactive Transport Modeling. J. Geotech. Geoenviron. Eng. 2023, 149, 04023071. [Google Scholar] [CrossRef]
- Whiffin, V.S. Murdoch University; Division of Science and Engineering. Microbial CaCO3 Precipitation for the Production of Biocement. Ph.D. Thesis, Murdoch University, Perth, Australia, 2004. [Google Scholar]
- Van Paassen, L.A.; Ghose, R.; van der Linden, T.J.M.; van der Star, W.R.L.; van Loosdrecht, M.C.M. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- Dong, Y.; Guo, Z.; Guo, N.; Liu, T. One-Step Removal of Calcium, Magnesium, and Nickel in Desalination by Alcaligenes aquatilis via Biomineralization. Crystals 2019, 9, 633. [Google Scholar] [CrossRef]
- O’donnell, S.T.; Rittmann, B.E.; Kavazanjian, K., Jr. Factors Controlling Microbially Induced Desaturation and Precipitation (MIDP) via Denitrification during Continuous Flow. Geomicrobiol. J. 2019, 36, 543–558. [Google Scholar] [CrossRef]
- Erşan, Y.; de Belie, N.; Boon, N. Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. Biochem. Eng. J. 2015, 101, 108–118. [Google Scholar] [CrossRef]
- Ganendra, G.; Wang, J.; Ramos, J.A.; Derluyn, H.; Rahier, H.; Cnudde, V.; Ho, A.; Boon, N. Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP. Front. Microbiol. 2015, 6, 786. [Google Scholar] [CrossRef] [PubMed]
- Ohan, J.A.; Saneiyan, S.; Lee, J.; Bartlow, A.W.; Ntarlagiannis, D.; Burns, S.E.; Colwell, F.S. Microbial and Geochemical Dynamics of an Aquifer Stimulated for Microbial Induced Calcite Precipitation (MICP). Front. Microbiol. 2020, 11, 1327. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Sahu, R.B.; Mukherjee, J.; Sadhu, S. Application of Microbial-Induced Carbonate Precipitation for Soil Improvement via Ureolysis. In Ground Improvement Techniques and Geosynthetics; Thyagaraj, T., Ed.; Lecture Notes in Civil Engineering; Springer: Singapore, 2019; pp. 85–94. [Google Scholar] [CrossRef]
- De Belie, N. Microorganisms versus stony materials: A love–hate relationship. Mater. Struct. 2010, 43, 1191–1202. [Google Scholar] [CrossRef]
- Lin, H.; Suleiman, M.T.; Brown, D.G. Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP). Soils Found. 2020, 60, 944–961. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Qabany, A.; Soga, K. Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique 2013, 63, 331–339. [Google Scholar] [CrossRef]
- Montoya, B.M.; Dejong, J.T. Healing of biologically induced cemented sands. Geotech. Lett. 2013, 3, 147–151. [Google Scholar] [CrossRef]
- Gat, D.; Ronen, Z.; Tsesarsky, M. Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation. Environ. Sci. Technol. 2016, 50, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.G.; Graddy, C.M.R.; DeJong, J.T.; Nelson, D.C.; Tsesarsky, M. Stimulation of Native Microorganisms for Biocementation in Samples Recovered from Field-Scale Treatment Depths. J. Geotech. Geoenviron. Eng. 2018, 144, 1804. [Google Scholar] [CrossRef]
- Behzadipour, H.; Sadrekarimi, A. Effect of microbial-induced calcite precipitation on shear strength of gold mine tailings. Bull. Eng. Geol. Environ. 2023, 82, 331. [Google Scholar] [CrossRef]
- Osinubi, K.J.; Gadzama, E.W.; Eberemu, A.O.; Ijimdiya, T.S.; Yakubu, S.E. Evaluation of the Strength of Compacted Lateritic Soil Treated with Sporosarcina Pasteurii. In Proceedings of the 8th International Congress on Environmental Geotechnics, ICEG 2018, Hangzhou, China, 28 October–1 November 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 419–428. [Google Scholar] [CrossRef]
- Montoya, B.M.; DeJong, J.T. Stress-Strain Behavior of Sands Cemented by Microbially Induced Calcite Precipitation. J. Geotech. Geoenviron. Eng. 2015, 141, 04015019. [Google Scholar] [CrossRef]
- Spencer, C.A.; van Paassen, L.; Sass, H. Effect of Jute Fibres on the Process of MICP and Properties of Biocemented Sand. Materials 2020, 13, 5429. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.A. Enhancing Biocement through Incorporation of Additives; Cardiff University: Cardiff, UK, 2021; Available online: https://orca.cardiff.ac.uk/id/eprint/146016/ (accessed on 11 July 2023).
- Botusharova, S. Self-Healing Geotechnical Structures via Microbial Action. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2017. [Google Scholar]
- Ramachandran, A.L.; Ghalib, M.; Dhami, N.K.; Cheema, D.; Mukherjee, A. Multi-functional performance of biopolymers and biocement in stabilisation of road bases. Proc. Inst. Civ. Eng. Constr. Mater. 2022, 1–15. [Google Scholar] [CrossRef]
- Tobler, D.J.; Cuthbert, M.O.; Greswell, R.B.; Riley, M.S.; Renshaw, J.C.; Handley-Sidhu, S.; Phoenix, V.R. Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochim. Cosmochim. Acta 2011, 75, 3290–3301. [Google Scholar] [CrossRef]
- Harkes, M.P.; van Paassen, L.A.; Booster, J.L.; Whiffin, V.S.; van Loosdrecht, M.C.M. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 2010, 36, 112–117. [Google Scholar] [CrossRef]
- Rebata-Landa, V. Microbial Activity in Sediments: Effects on Soil Behaviour. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2007. [Google Scholar]
- ASTM D6913/D6913M-17; Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D1557-12e1; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2700 kN-m/m3)). ASTM International: West Conshohocken, PA, USA, 2012.
- BS 1377-7:1990; Methods of Test for Soils for Civil Engineering Purposes. Part 7: Shear Strength Tests (Total Stress). British Standards Institution: London, UK, 1999. Available online: https://shop.bsigroup.com/ProductDetail?pid=000000000000211981 (accessed on 26 November 2020).
- Shimadzu. Important Points about Ion Chromatography. 2021. Available online: https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/ion/42lab.html (accessed on 20 April 2021).
- United States Environmental Protection Agency. Methods for Chemical Analysis of Water and Wastes; United States Environmental Protection Agency: Washington, DC, USA, 1983.
- Pastero, L. Carbonates; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Greenburg, A.E.; Clesceri, L.S.; Eaton, A.D. Standard Methods: For the Examination of Water and Wastewater, 18th ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Eijkelkamp Soil & Water. Calcimeter: Manual; Eijkelkamp Soil & Water: Giesbeek, The Netherlands, 2018; Available online: https://www.eijkelkamp.com/download.php?file=M0853e_Calcimeter_b21b.pdf (accessed on 1 November 2019).
- Erdmann, N.; Strieth, D. Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World J. Microbiol. Biotechnol. 2022, 39, 61. [Google Scholar] [CrossRef] [PubMed]
- Hang, L.; Yang, F.; Xu, J.; Zhao, Z.; Xiao, W.; He, J. Experimental Study on the Effective Production of Biocement for Soil Solidification and Wind Erosion Control. Sustainability 2023, 15, 5402. [Google Scholar] [CrossRef]
- Murugan, R.; Suraishkumar, G.K.; Mukherjee, A.; Dhami, N.K. Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process. PLoS ONE 2021, 16, e0254536. [Google Scholar] [CrossRef] [PubMed]
- Mahawish, A.; Bouazza, A.; Gates, W.P. Unconfined Compressive Strength and Visualization of the Microstructure of Coarse Sand Subjected to Different Biocementation Levels. J. Geotech. Geoenviron. Eng. 2019, 145, 04019033. [Google Scholar] [CrossRef]
- Mujah, D.; Cheng, L.; Shahin, M.A. Microstructural and Geomechanical Study on Biocemented Sand for Optimization of MICP Process. J. Mater. Civ. Eng. 2019, 31, 04019025. [Google Scholar] [CrossRef]
Growth Medium | Chemical | Concentration (g/L) | Sterilisation Method |
---|---|---|---|
LB + urea | Yeast extract | 5 | Autoclave |
Tryptone | 10 | Autoclave | |
Sodium chloride (NaCl) | 10 | Autoclave | |
Agar | 15 | Autoclave | |
Urea (NH2(CO)NH2) | 20 | Syringe filter | |
Liquid broth | Oxoid CM0001 nutrient broth | 13 | Autoclave |
Urea (NH2(CO)NH2) | 20 | Syringe Filter |
Tube Set | Calcium Chloride Dihydrate (M) | Urea (M) | Ammonium Chloride (M) | Sodium Bicarbonate (M) | Inoculated (Y/N) |
---|---|---|---|---|---|
1a-b | 0.25 | 0.333 | 0.094 | 0.013 | Y |
2a-b | 0.50 | 0.666 | 0.187 | 0.025 | Y |
3a-b | 0.75 | 0.999 | 0.281 | 0.038 | Y |
4a-b | 1.00 | 1.332 | 0.374 | 0.050 | Y |
5a-b | 0.25 | 0.333 | 0 | 0 | Y |
6a-b | 0.50 | 0.666 | 0 | 0 | Y |
7a-b | 0.75 | 0.999 | 0 | 0 | Y |
8a-b | 1.00 | 1.332 | 0 | 0 | Y |
9a-b | 0.50 | 0.666 | 0.187 | 0.025 | N |
10a-b | 1.00 | 1.332 | 0.374 | 0.050 | N |
Soil Origin | Gs | ρ (g/cm3) | Mineralogy | Shape |
---|---|---|---|---|
Ottawa | 2.65 | 1.522 | Quartz | Round |
Precursor Chemicals and Nutrients | CM1a (g/L) | CM2a (g/L) | Sterilisation Method |
---|---|---|---|
Calcium chloride dihydrate (CaCl2·2H2O) | 73.51 | 73.51 | Autoclaved |
Urea (NH2(CO)NH2) | 40 | 40 | Syringe filtered |
Ammonium chloride (NH4Cl) | - | 20 | Autoclaved |
Sodium bicarbonate (NaHCO3) | - | 2.12 | Syringe filtered |
Oxoid CM0001 nutrient broth | 3 | 3 | Autoclaved |
Treatment | Retention Time (h) | Columns 1–3 Injection | Columns 4–6 Injection |
1 | 16 | CM1a | CM1a |
2 | 22 | CM1a | CM2a |
3 | 24 | CM1a | CM2a |
4 | 120 | CM1a | CM2a |
Flushing | 0 | Tap water | Tap water |
D10 | D50 | D60 | D30 | Cu | Cz |
---|---|---|---|---|---|
0.104 | 0.199 | 0.212 | 0.168 | 2.038 | 1.280 |
Column | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Effluent OD600 (5–10 mL) | 0.004 | 0.007 | 0.022 | 0.057 | 0.068 | 0.582 |
Column | UCS (kPa) | Strain at Failure (%) | Moisture Content (%) | Dry Density (g/cm3) | (%) Target Density |
---|---|---|---|---|---|
1 | 133.00 | 1.31 | 17.10 | 1.63 | 95.45 |
2 | 175.02 | 2.32 | 16.80 | 1.61 | 94.43 |
3 | 141.70 | 1.86 | 15.94 | 1.58 | 92.25 |
4 | 220.25 | 2.20 | 16.19 | 1.57 | 91.81 |
5 | 363.46 | 1.80 | 15.78 | 1.67 | 97.38 |
6 | 230.15 | 4.19 | 16.30 | 1.66 | 96.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spencer, C.A.; Sass, H.; van Paassen, L. Increased Microbially Induced Calcium Carbonate Precipitation (MICP) Efficiency in Multiple Treatment Sand Biocementation Processes by Augmentation of Cementation Medium with Ammonium Chloride. Geotechnics 2023, 3, 1047-1068. https://doi.org/10.3390/geotechnics3040057
Spencer CA, Sass H, van Paassen L. Increased Microbially Induced Calcium Carbonate Precipitation (MICP) Efficiency in Multiple Treatment Sand Biocementation Processes by Augmentation of Cementation Medium with Ammonium Chloride. Geotechnics. 2023; 3(4):1047-1068. https://doi.org/10.3390/geotechnics3040057
Chicago/Turabian StyleSpencer, Christine Ann, Henrik Sass, and Leon van Paassen. 2023. "Increased Microbially Induced Calcium Carbonate Precipitation (MICP) Efficiency in Multiple Treatment Sand Biocementation Processes by Augmentation of Cementation Medium with Ammonium Chloride" Geotechnics 3, no. 4: 1047-1068. https://doi.org/10.3390/geotechnics3040057
APA StyleSpencer, C. A., Sass, H., & van Paassen, L. (2023). Increased Microbially Induced Calcium Carbonate Precipitation (MICP) Efficiency in Multiple Treatment Sand Biocementation Processes by Augmentation of Cementation Medium with Ammonium Chloride. Geotechnics, 3(4), 1047-1068. https://doi.org/10.3390/geotechnics3040057