Perspectives of 3D Probabilistic Subsoil Modeling for BIM
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Non-Geostatistical Interpolation Methods
2.3. Geostatistical Methods
2.3.1. Variography
2.3.2. Kriging Interpolation and Geostatistical Simulations
2.4. Quantifying and Visualizing Uncertainty
3. Results
3.1. Layer Boundaries
3.2. Lenticular Bedding
3.3. Case Study—Combination of Simulation Methods
3.4. Incorporation in BIM
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cowan, E.J.; Beatson, R.K.; Fright, W.R.; McLennan, T.J.; Mitchell, T.J. Rapid Geological Modelling; Australian Institute of Geoscientists: Kalgoorlie, Australia, 2002. [Google Scholar]
- Griffiths, D.V.; Huang, J.; Fenton, G.A. Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields. J. Geotech. Geoenviron. Eng. 2009, 135, 1367–1378. [Google Scholar] [CrossRef]
- Lloret-Cabot, M.; Hicks, M.A.; van den Eijnden, A.P. Investigation of the reduction in uncertainty due to soil variability when conditioning a random field using Kriging. Géotechnique Lett. 2012, 2, 123–127. [Google Scholar] [CrossRef]
- Yang, R.; Huang, J.; Griffiths, D.V.; Sheng, D. Probabilistic Stability Analysis of Slopes by Conditional Random Fields; American Society of Civil Engineers: Reston, VA, USA, 2017. [Google Scholar]
- Robertson, P.K. Soil behavior type from the CPT: An update. In Proceedings of the 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, 9–11 May 2010. [Google Scholar]
- Grasmick, J.G.; Mooney, M.A.; Trainor-Guitton, W.J.; Walton, G. Global versus Local Simulation of Geotechnical Parameters for Tunneling Projects. J. Geotech. Geoenviron. Eng. 2020, 146, 04020048. [Google Scholar] [CrossRef]
- Gangrade, R.M.; Grasmick, J.G.; Mooney, M.A. Probabilistic Assessment of Void Risk and Grouting Volume for Tunneling Applications. Rock Mech. Rock Eng. 2022, 55, 2771–2786. [Google Scholar] [CrossRef]
- Kring, K.; Chatterjee, S. Uncertainty quantification of structural and geotechnical parameter by geostatistical simulations applied to a stability analysis case study with limited exploration data. Int. J. Rock Mech. Min. Sci. 2020, 125, 104157. [Google Scholar] [CrossRef]
- Xie, P.; Chen, K.; Skibniewski, M.J.; Wang, J.; Luo, H. Parametric geological model update and probabilistic analysis of shield tunnel excavation: A borehole-based conditional random fields approach. Comput. Geotech. 2023, 157, 105349. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, R.; Zheng, J.; Li, Z. Probabilistic analysis of subway station excavation based on BIM-RF integrated technology. Autom. Constr. 2022, 135, 104114. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Stepien, M.; König, M. Optimisation of geotechnical surveys using a BIM-based geostatistical analysis. SASBE 2021, 10, 420–437. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Journel, A.G. GSLIB Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: Oxford, UK, 1989; ISBN 0195050126. [Google Scholar]
- Pyrcz, M.; Deutsch, C.V. Geostatistical Reservoir Modeling, 2nd ed.; Oxford University Press: New York, NY, USA; Oxford, UK, 2014; ISBN 9780199731442. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wellmann, J.F.; Regenauer-Lieb, K. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models. Tectonophysics 2012, 526–529, 207–216. [Google Scholar] [CrossRef]
- Lindsay, M.D.; Aillères, L.; Jessell, M.W.; de Kemp, E.A.; Betts, P.G. Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia. Tectonophysics 2012, 546–547, 10–27. [Google Scholar] [CrossRef]
- Wald, A. Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large. Trans. Am. Math. Soc. 1943, 54, 426. [Google Scholar] [CrossRef]
- Bauer, M.; Thuro, K.; Scholz, M.; Neumann, P. The Geology of Munich (Germany) and Its Significance for Ground Modelling in Urban Areas; IAEG: San Francisco, CA, USA, 2006. [Google Scholar]
- Witty, A.; Peña-Olarte, A.; Cudmani, R. Application of Geostatistical Sequential Simulation Methods for Probabilistic 3D Subsoil Modeling and Uncertainty Quantification—Concept and Examples. In Proceedings of the Geo-Congress 2023, Los Angeles, CA, USA, 26–29 March 2023. [Google Scholar] [CrossRef]
- Witty, A.; Peña-Olarte, A.; Cudmani, R. Comparison of Gaussian and Indicator Based Sequential Simulation Methods for 3D Spatial Uncertainty Quantification in Subsoil Modelling Using Cone Penetration Tests. In Proceedings of the Geo-Risk 2023, Arlington, VA, USA, 23–26 July 2023. [Google Scholar] [CrossRef]
- Molzahn, M.; Bauer, J.; Henke, S.; Tilger, K. Entwicklungsstufen und Attribuierung des Fachmodells Baugrund—Empfehlungen Nr. 2 des Arbeitskreises 2.14 der DGGT „Digitalisierung in der Geotechnik“. Geotechnik 2021, 44, 209–218. [Google Scholar] [CrossRef]
- Erharter, G.H.; Weil, J.; Bacher, L.; Heil, F.; Kompolschek, P. Building information modelling based ground modelling for tunnel projects—Tunnel Angath/Austria. Tunn. Undergr. Space Technol. 2023, 135, 105039. [Google Scholar] [CrossRef]
- Weil, J. Digitale Baugrundmodelle im Tunnelbau—Status, Chancen und Risiken. Geomech. Tunn. 2020, 13, 221–236. [Google Scholar] [CrossRef]
- Stütz, D.; Herten, M. Evaluation von Software zur Generierung von Baugrundschichtenmodellen. Geotechnik 2020, 43, 275–282. [Google Scholar] [CrossRef]
- DIN 4020: 2010-12; Geotechnische Untersuchungen für Bautechnische Zwecke—Ergänzende Regelungen zu DIN EN 1997-2. Deutsche Institut für Normung e. V. (DIN): Berlin, Germany, 2010.
- Bauer, J. Digitalisierung in der Geotechnik: Status Quo und aktuelle Entwicklungen. In 13. Kolloquium Bauen in Boden und Fels: Fachtagung über Aktuelle Herausforderungen der Geotechnik; Expert Verlag: Tübingen, Germany, 2022. [Google Scholar]
- DIN EN 1997-1:2014-03; Eurocode 7—Entwurf, Berechnung und Bemessung in der Geotechnik—Teil 1: Allgemeine Regeln; Deutsche Fassung EN 1997-1:2004 + AC:2009 + A1:2013. Deutsche Institut für Normung e. V. (DIN): Berlin, Germany, 2014.
- ISO 16739-1:2005; Industry Foundation Classes, Release 2x, Platform Specification (IFC2x Platform). International Organization for Standardization (ISO): Geneva, Switzerland, 2005.
- ISO 16739-1:2018; Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries—Part 1: Data Schema. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Köbberich, M.; Schneider, O.; Schildknecht, L.; Gafner, T.; Volken, S.; Wehrens, P.; Preisig, M.; Schwab, P.; Staub, B.; Grischott, R.; et al. GEOL_BIM Innovation Project—Final Report; CHGEOL: Solothurn, Switzerland, 2022. [Google Scholar]
- Borrmann, A.; Rives, M.; Muhic, S.; Wikström, L.; Weil, J. The IFC-Tunnel project–Extending the IFC standard to enable high-quality exchange of tunnel information models. In Advances in Information Technology in Civil and Building Engineering; Springer: Cham, Switzerland, 2022. [Google Scholar]
Variability (%) | Grade |
---|---|
<15 | Good |
15–30 | Fair |
30–45 | Poor |
<45 | Very Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiegel, A.; Peña-Olarte, A.A.; Cudmani, R. Perspectives of 3D Probabilistic Subsoil Modeling for BIM. Geotechnics 2023, 3, 1069-1084. https://doi.org/10.3390/geotechnics3040058
Wiegel A, Peña-Olarte AA, Cudmani R. Perspectives of 3D Probabilistic Subsoil Modeling for BIM. Geotechnics. 2023; 3(4):1069-1084. https://doi.org/10.3390/geotechnics3040058
Chicago/Turabian StyleWiegel, Andreas, Andrés A. Peña-Olarte, and Roberto Cudmani. 2023. "Perspectives of 3D Probabilistic Subsoil Modeling for BIM" Geotechnics 3, no. 4: 1069-1084. https://doi.org/10.3390/geotechnics3040058
APA StyleWiegel, A., Peña-Olarte, A. A., & Cudmani, R. (2023). Perspectives of 3D Probabilistic Subsoil Modeling for BIM. Geotechnics, 3(4), 1069-1084. https://doi.org/10.3390/geotechnics3040058