Previous Issue
Volume 5, December
 
 

Nanoenergy Adv., Volume 6, Issue 1 (March 2026) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 5806 KB  
Article
Novel TiO2 Nanotube-Based Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Medium
by Bogdan-Ovidiu Taranu, Radu Banica and Florina Stefania Rus
Nanoenergy Adv. 2026, 6(1), 5; https://doi.org/10.3390/nanoenergyadv6010005 - 12 Jan 2026
Viewed by 164
Abstract
The increasing global energy demand and its negative environmental impact created the need for substantial changes in the energy infrastructure. A hydrogen-based infrastructure appears to be the most promising way to secure a clean and safe energy future. Water electrolysis is a method [...] Read more.
The increasing global energy demand and its negative environmental impact created the need for substantial changes in the energy infrastructure. A hydrogen-based infrastructure appears to be the most promising way to secure a clean and safe energy future. Water electrolysis is a method that can be used to generate green hydrogen, but suitable electrocatalysts are required for large-scale applications. This work investigates the electrocatalytic activity of electrodes modified with novel TiO2 nanotube-based electrocatalysts for water electrolysis. The focus was on the hydrogen evolution reaction (HER), and the electrodes that displayed the highest activity were the ones obtained with the procedure consisting of the growth of TiO2 nanotubes on a Ti plate by anodization, the subsequent deposition of MoO2 and Ni(OH)2, and a thermal treatment performed under different conditions. The results of the HER experiments performed in a strong alkaline environment showed that the electrode obtained via vacuum heat treatment exhibited the lowest overpotential value, of 238 mV at i = −10 mA/cm2. Furthermore, the electrode was electrochemically stable, and inter-electrode reproducibility tests revealed only a small variation of the HER overpotential. Full article
Show Figures

Figure 1

19 pages, 2498 KB  
Article
Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems
by Rahul Agrawal, Kashif Mushtaq, Daniel López Pedrajas, Iqra Irfan and Breogán Pato-Doldán
Nanoenergy Adv. 2026, 6(1), 4; https://doi.org/10.3390/nanoenergyadv6010004 - 9 Jan 2026
Viewed by 214
Abstract
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology [...] Read more.
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology is a promising solution but has challenges such as solar intermittency. This challenge can be solved by integrating SHDH with the phase change material as a solar energy storage medium. Therefore, a novel nano-enhanced binary eutectic phase change material (NEPCM) was developed in this project. PCM consisting of 70 wt.% stearic acid (ST) and 30 wt.% suberic acid (SBU) with a varying concentration of silicon carbide (SiC) nanoparticles (NPs) (0.1 to 3 wt.%) was synthesized specifically considering the need of SHDH application. The systematic thermophysical characterization was conducted to investigate their energy storage capacity, thermal durability, and performance consistency over repeated cycles. DSC analysis revealed that the addition of SiC NPs preserved the thermal stability of the NEPCM, while the phase transition temperature remained nearly unchanged with a variation of less than 0.74%. The value of latent heat is inversely related to the nanoparticle concentration, i.e., from 142.75 kJ/kg for the base PCM to 131.24 kJ/kg at 3 wt.% loading. This corresponds to reductions in latent heat ranging between 0.98% and 8.06%. The FTIR measurement confirms that no chemical reactions or no new functional groups were formed. All original functional groups of ST and SBU remained intact, showing that incorporating the SiC NP to the PCM lead to physical interactions (e.g., hydrogen bonding or surface adsorption). The TGA analysis showed that the SiC NPs in the NEPCM act as supporting material, and its nano-doping enhanced the final degradation temperature and thermal stability. There was negligible change in thermal conductivity for nanoparticle loadings of 0.1% and 0.4%; however, it increased progressively by 5.2%, 10.8%, 23.12%, and 25.8% at nanoparticle loadings of 0.7%, 1%, 2%, and 3%, respectively, at 25 °C. Thermal reliability was analyzed through a DSC thermal cycling test which confirmed the suitability of the material for the desired applications. Full article
(This article belongs to the Special Issue Innovative Materials for Renewable and Sustainable Energy Systems)
Show Figures

Figure 1

17 pages, 4799 KB  
Article
Polybenzimidazole Membranes Modified with Porous Aromatic Frameworks: Synthesis, Structure, Mechanical and Transport Properties
by Dmitry D. Spasov, Ruslan M. Mensharapov, Matvey V. Sinyakov, Darya E. Grineva, Nataliya A. Ivanova, Xiang Li, Chuanyu Sun, Leonid A. Kulikov, Daria A. Makeeva and Sergey A. Grigoriev
Nanoenergy Adv. 2026, 6(1), 3; https://doi.org/10.3390/nanoenergyadv6010003 - 8 Jan 2026
Viewed by 218
Abstract
High-temperature proton exchange membrane systems (HT-PEM) based on polybenzimidazole (PBI) membranes are a promising technology offering significant advantages over their low-temperature counterparts. A key challenge limiting its long-term durability is the leaching of phosphoric acid (PA) from the membrane during operation. This work [...] Read more.
High-temperature proton exchange membrane systems (HT-PEM) based on polybenzimidazole (PBI) membranes are a promising technology offering significant advantages over their low-temperature counterparts. A key challenge limiting its long-term durability is the leaching of phosphoric acid (PA) from the membrane during operation. This work introduces, for the first time, the strategy of modifying polybenzimidazole (PBI) membranes with amino-functionalized porous aromatic frameworks (PAF-20-NH2) to fundamentally enhance their PA retention and operational stability, a critical challenge for high-temperature PEM technologies. We propose that the synergistic combination of the framework’s nanoscale porosity and the specific interaction of its amino groups create an unprecedented network for acid immobilization via reinforced hydrogen bonding. A comprehensive study of the membranes’ physicochemical and structural properties reveals that PAF-20-NH2 modification results in a significant and quantitatively demonstrated improvement in acid retention capacity, directly translating into a notable increase in proton conductivity compared to both pristine PBI and membranes modified with the non-functionalized PAF-20. These findings establish a new, highly effective pathway for the rational design of next-generation high-performance PBI-based membranes. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

43 pages, 3884 KB  
Review
Advanced Layer Fabrication Technologies in Solid Oxide Fuel Cells: From Traditional Methods to Additive and Thin-Film Strategies
by Serikzhan Opakhai, Asset Kabyshev, Marzhan Kubenova, Zhassulan Zeinulla, Bakytbek Mauyey and Saira Sakhabayeva
Nanoenergy Adv. 2026, 6(1), 2; https://doi.org/10.3390/nanoenergyadv6010002 - 25 Dec 2025
Viewed by 480
Abstract
This review examines modern approaches to layer formation in solid oxide fuel cells (SOFCs), focusing on traditional, thin-film, and additive manufacturing methods. A systematic comparison of technologies, including slip casting, screen printing, CVD, PLD, ALD, HiPIMS, inkjet, aerosol, and microextrusion printing, is provided. [...] Read more.
This review examines modern approaches to layer formation in solid oxide fuel cells (SOFCs), focusing on traditional, thin-film, and additive manufacturing methods. A systematic comparison of technologies, including slip casting, screen printing, CVD, PLD, ALD, HiPIMS, inkjet, aerosol, and microextrusion printing, is provided. It is shown that traditional methods remain technologically robust but are limited in their capabilities for miniaturization and interfacial architecture design. Modern thin-film and additive approaches provide high spatial accuracy, improved ion-electron characteristics, and flexibility in the design of multilayer structures; however, they require addressing issues related to scalability, ink stability, interfacial compatibility, and reproducibility. Particular attention is paid to interfacial engineering methods, such as functionally graded layers, nanostructured infiltration, and temperature-controlled 3D printing. Key challenges are discussed, including thermal instability of materials, the limited gas impermeability of ultra-thin electrolytes, and degradation during long-term operation. Development prospects lie in the integration of hybrid methods, the digitalization of deposition processes, and the implementation of intelligent control of printing parameters. The presented analysis forms the basis for further research into the scalable and highly efficient production of next-generation SOFCs designed for low-temperature operation and long-term operation in future energy systems. Full article
Show Figures

Graphical abstract

15 pages, 2297 KB  
Article
Cellulose-Based Sustainable Photo-Triboelectric Hybrid Nanogenerator for High-Performance Energy Harvesting and Smart Control Systems
by Zhen Tian, Jiacheng Liu, Chang Ding, Changyu Yang, Muqing Chen, Xiaoming Chen, Qiang Liu and Li Su
Nanoenergy Adv. 2026, 6(1), 1; https://doi.org/10.3390/nanoenergyadv6010001 - 23 Dec 2025
Viewed by 404
Abstract
With the advancement of Internet of Things (IoT) technology, flexible sensors with dual optoelectronic sensing modes have emerged as a research hotspot for next-generation smart devices, further driving the urgent demand for environmentally friendly functional materials. Here, we innovatively integrated wastepaper recycling technology [...] Read more.
With the advancement of Internet of Things (IoT) technology, flexible sensors with dual optoelectronic sensing modes have emerged as a research hotspot for next-generation smart devices, further driving the urgent demand for environmentally friendly functional materials. Here, we innovatively integrated wastepaper recycling technology with a polyethyleneimine (PEI)-assisted pulping strategy to develop a novel cellulose-based sustainable photo-triboelectric hybrid nanogenerator (PT-HNG). Based on the working mechanism of a freestanding triboelectric nanogenerator (TENG), the PT-HNG can directly convert pressure stimuli into electrical energy and triboelectrification-induced electroluminescence (TIEL) signals. It achieves luminescence brightness of 0.06 mW cm−2 (3.84 cd m−2) and simultaneously delivers excellent electrical output performance (172.4 V, 6.36 μA, 43.7 nC) under sliding motion. More importantly, compatible with existing industrial papermaking processes, the PT-HNG is scalable for large-scale production. By combining PT-HNG with deep learning algorithms, a handwritten e-book system based on trajectory recognition was constructed, with a recognition accuracy of up to 95.5%. In addition, real-time intelligent control of PowerPoint presentations via PT-HNG was demonstrated. This study provides a new pathway for converting wastepaper into intelligent products and presents a novel idea for the interdisciplinary integration of the circular economy and advanced electronic technology. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop