Gaussian Process Regression for Machine Learning on Effective Crystal Graphs of Body-Centered Cubic Iron
Abstract
1. Introduction
2. Methods
2.1. Ab Initio Molecular Dynamics
2.2. Harmonic Ensemble Lattice Dynamics
2.3. Effective Crystal Graphs
2.4. Graph Kernel and Gaussian Process Regression
2.5. Potential Energy Surfaces
3. Results
3.1. Evaluation of the Machine-Learning Model
3.2. RMSE vs. Size of the Training Set
3.3. Validation Set
3.4. Phonon Dispersions and Dynamical Stability
3.5. Force–Displacement Analysis
| Temperature (K) | Configuration | Mechanical Stability Analysis |
|---|---|---|
| 800 | 1NN | Highly unstable: Significant force fluctuations, large nonlinearity, and chaotic atomic displacements. |
| 2NN | Highly unstable: Pronounced deviations from linearity, loss of predictable force response. | |
| 3NN | Highly unstable: Strong force perturbations, nonlinear atomic interactions. | |
| 1250 | 1NN | Unstable: Nonlinear force behavior with increasing atomic variability. |
| 2NN | Unstable: Increasing deviation from harmonic behavior, growing force dispersion. | |
| 3NN | Unstable: Significant force fluctuations, curvature effects become prominent. | |
| 2500 | 1NN | Onset of instability: Emergence of force deviations from harmonic response. |
| 2NN | Onset of instability: Detectable nonlinear behavior in atomic interactions. | |
| 3NN | Onset of instability: Small perturbations lead to measurable force anisotropy. | |
| 3700 | 1NN | Marginally stable: Force response exhibits minor nonlinearity but retains overall structural integrity. |
| 2NN | Marginally stable: Small deviations from perfect linearity, with a well-defined force response. | |
| 3NN | Marginally stable: Predominantly linear atomic interactions with minor force anisotropy. | |
| 5000 | 1NN | Stable: Near-harmonic force response with minimal perturbations. |
| 2NN | Stable: Slight force deviations but overall linear atomic behavior maintained. | |
| 3NN | Stable: Minimal force fluctuations, predominantly linear and predictable response. |
4. Discussion
4.1. Geophysics Considerations
4.2. Effect of Magnetism on the Stability of BCC Iron
4.3. Contributions to Scientific Machine Learning
4.4. Contributions to the Understanding of the Inner Core of the Earth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, J.; Chu, X.; Sun, X.Y.; Xu, K.; Deng, H.X.; Chen, J.; Wei, Z.; Lei, M. Machine learning in materials science. InfoMat 2019, 1, 338–358. [Google Scholar] [CrossRef]
- Hart, G.L.; Mueller, T.; Toher, C.; Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 2021, 6, 730–755. [Google Scholar] [CrossRef]
- Connolly, J.W.D.; Williams, A.R. Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 1983, 27, 5169–5172. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Ducastelle, F.; Gratias, D. Generalized cluster description of multicomponent systems. Phys. A Stat. Mech. Its Appl. 1984, 128, 334–350. [Google Scholar] [CrossRef]
- Kadkhodaei, S.; Muñoz, J.A. Cluster expansion of alloy theory: A review of historical development and modern innovations. JOM 2021, 73, 3326–3346. [Google Scholar] [CrossRef]
- Bartók, A.P.; Payne, M.C.; Kondor, R.; Csányi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 2010, 104, 136403. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.P.; Swiler, L.P.; Trott, C.R.; Foiles, S.M.; Tucker, G.J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 2015, 285, 316–330. [Google Scholar] [CrossRef]
- Novikov, I.S.; Gubaev, K.; Podryabinkin, E.V.; Shapeev, A.V. The MLIP package: Moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2020, 2, 025002. [Google Scholar] [CrossRef]
- Tang, Y.H.; de Jong, W.A. Prediction of atomization energy using graph kernel and active learning. J. Chem. Phys. 2019, 150, 044107. [Google Scholar] [CrossRef] [PubMed]
- Dziewonski, A.; Gilbert, F. Solidity of the inner core of the Earth inferred from normal mode observations. Nature 1971, 234, 465–466. [Google Scholar] [CrossRef]
- Loper, D.E. The gravitationally powered dynamo. Geophys. J. Int. 1978, 54, 389–404. [Google Scholar] [CrossRef]
- Deguen, R. Structure and dynamics of Earth’s inner core. Earth Planet. Sci. Lett. 2012, 333, 211–225. [Google Scholar] [CrossRef]
- Munoz, J.A., Jr. Electronic Structure and Phonon Thermodynamics of Iron Alloys; California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Körmann, F.; Breidi, A.A.H.; Dudarev, S.L.; Dupin, N.; Ghosh, G.; Hickel, T.; Korzhavyi, P.; Muñoz, J.A.; Ohnuma, I. Lambda transitions in materials science: Recent advances in CALPHAD and first-principles modelling. Phys. Status Solidi (B) 2014, 251, 53–80. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Occelli, F.; Mezouar, M.; Dorogokupets, P.I.; Torrent, M. Quasihydrostatic equation of state of iron above 2 Mbar. Phys. Rev. Lett. 2006, 97, 215504. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.; Cohen, R. Lattice dynamics and thermodynamics of bcc iron under pressure: First-principles linear response study. Phys. Rev. B 2006, 73, 104303. [Google Scholar] [CrossRef]
- Stixrude, L.; Cohen, R.; Singh, D. Iron at high pressure: Linearized-augmented-plane-wave computations in the generalized-gradient approximation. Phys. Rev. B 1994, 50, 6442. [Google Scholar] [CrossRef]
- Pickard, C.J.; Needs, R. Stable phases of iron at terapascal pressures. J. Phys. Condens. Matter 2009, 21, 452205. [Google Scholar] [CrossRef]
- Cuong, T.D.; Phan, A.D. Reconstructing the phase diagram of iron in the terapascal region via the statistical moment method. Phys. Rev. B 2023, 108, 134111. [Google Scholar] [CrossRef]
- Saxena, S.; Dubrovinsky, L. Iron phases at high pressures and temperatures: Phase transition and melting. Am. Mineral. 2000, 85, 372–375. [Google Scholar] [CrossRef]
- Alfè, D.; Price, G.; Gillan, M. Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions. Phys. Rev. B 2001, 64, 045123. [Google Scholar] [CrossRef]
- Vočadlo, L.; Brodholt, J.; Alfè, D.; Gillan, M.J.; Price, G.D. Ab initio free energy calculations on the polymorphs of iron at core conditions. Phys. Earth Planet. Inter. 2000, 117, 123–137. [Google Scholar] [CrossRef]
- Nguyen, J.H.; Holmes, N.C. Melting of iron at the physical conditions of the Earth’s core. Nature 2004, 427, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Somayazulu, M.; Shen, G.; Mao, H.k.; Shu, J.; Hemley, R.J. In situ X-ray diffraction studies of iron to Earth-core conditions. Phys. Earth Planet. Inter. 2004, 143, 455–467. [Google Scholar] [CrossRef]
- Tateno, S.; Hirose, K.; Ohishi, Y.; Tatsumi, Y. The structure of iron in Earth’s inner core. Science 2010, 330, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Johansson, B.; Eriksson, O.; Arapan, S.; Souvatzis, P.; Katsnelson, M.I.; Ahuja, R. Dynamical stability of body center cubic iron at the Earth’s core conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 9962–9964. [Google Scholar] [CrossRef]
- Arteaga Muniz, V.I. Phonon Dispersions of Nonmagnetic Bcc Iron at High Pressures from Ab Initio Molecular Dynamics and Harmonic Ensemble Lattice Dynamics. Master’s Thesis, University of Texas at El Paso, El Paso, TX, USA, 2022. [Google Scholar]
- Belonoshko, A.B.; Lukinov, T.; Fu, J.; Zhao, J.; Davis, S.; Simak, S.I. Stabilization of body-centred cubic iron under inner-core conditions. Nat. Geosci. 2017, 10, 312–316. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Fu, J.; Smirnov, G. Free energies of iron phases at high pressure and temperature: Molecular dynamics study. Phys. Rev. B 2021, 104, 104103. [Google Scholar] [CrossRef]
- Hrubiak, R.; Meng, Y.; Shen, G. Experimental evidence of a body centered cubic iron at the Earth’s core condition. arXiv 2018, arXiv:1804.05109. [Google Scholar]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Diaz-Caraveo, C.; Bimal, K.; San Martín, J.A.M. Lattice dynamics and free energies of Fe–V alloys with thermal and chemical disorder. J. Phys. Condens. Matter 2024, 36, 445401. [Google Scholar] [CrossRef] [PubMed]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford university press: Oxford, UK, 1954. [Google Scholar]
- Togo, A.; Chaput, L.; Tadano, T.; Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 2023, 35, 353001. [Google Scholar] [CrossRef]
- Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 2023, 92, 012001. [Google Scholar] [CrossRef]
- Togo, A.; Shinohara, K.; Tanaka, I. Spglib: A software library for crystal symmetry search. Sci. Technol. Adv. Mater. Methods 2024, 4, 2384822. [Google Scholar] [CrossRef]
- Parlinski, K.; Li, Z.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063. [Google Scholar] [CrossRef]
- Niu, Z.W.; Zeng, Z.Y.; Cai, L.C.; Chen, X.R. Study of the thermodynamic stability of iron at inner core from first-principles theory combined with lattice dynamics. Phys. Earth Planet. Inter. 2015, 248, 12–19. [Google Scholar] [CrossRef]
- Nguyen-Vo, T.H.; Teesdale-Spittle, P.; Harvey, J.E.; Nguyen, B.P. Molecular representations in bio-cheminformatics. Memetic Comput. 2024, 16, 519–536. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 1–23. [Google Scholar] [CrossRef]
- Xie, T.; Grossman, J.C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301. [Google Scholar] [CrossRef]
- Tang, Y.H.; Zhang, D.; Karniadakis, G.E. An atomistic fingerprint algorithm for learning ab initio molecular force fields. J. Chem. Phys. 2018, 148. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.H.; Selvitopi, O.; Popovici, D.T.; Buluç, A. A high-throughput solver for marginalized graph kernels on GPU. In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, 18–22 May 2020; pp. 728–738. [Google Scholar]
- Larsen, A.H.; Mortensen, J.J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.; Hammer, B.; Hargus, C.; et al. The atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, V.; Shirane, G.; Nathans, R. Phonon dispersion relation for iron. Phys. Rev. 1967, 162, 528. [Google Scholar] [CrossRef]
- Mauger, L.; Lucas, M.S.; Muñoz, J.A.; Tracy, S.J.; Kresch, M.; Xiao, Y.; Chow, P.; Fultz, B. Nonharmonic phonons in α-iron at high temperatures. Phys. Rev. B 2014, 90, 064303. [Google Scholar] [CrossRef]
- Nikolentzos, G.; Siglidis, G.; Vazirgiannis, M. Graph kernels: A survey. J. Artif. Intell. Res. 2021, 72, 943–1027. [Google Scholar] [CrossRef]
- Kashima, H.; Tsuda, K.; Inokuchi, A. Marginalized kernels between labeled graphs. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 321–328. [Google Scholar]
- Dragoni, D.; Daff, T.D.; Csányi, G.; Marzari, N. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron. Phys. Rev. Mater. 2018, 2, 013808. [Google Scholar] [CrossRef]
- Novikov, I.; Grabowski, B.; Körmann, F.; Shapeev, A. Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. npj Comput. Mater. 2022, 8, 13. [Google Scholar] [CrossRef]
- Nikolov, S.; Ramakrishna, K.; Rohskopf, A.; Lokamani, M.; Tranchida, J.; Carpenter, J.; Cangi, A.; Wood, M.A. Probing iron in Earth’s core with molecular-spin dynamics. Proc. Natl. Acad. Sci. USA 2024, 121, e2408897121. [Google Scholar] [CrossRef]
- Li, Z.; Scandolo, S. Deep-learning interatomic potential for iron at extreme conditions. Phys. Rev. B 2024, 109, 184108. [Google Scholar] [CrossRef]
- Metsanurk, E.; Klintenberg, M. Sampling-dependent systematic errors in effective harmonic models. Phys. Rev. B 2019, 99, 184304. [Google Scholar] [CrossRef]
- Heiming, A.; Petry, W.; Trampenau, J. Are martensitic phase transitions in pure group 3 and 4 metals driven by lattice vibrations? J. Phys. IV 1991, 1, C4-83–C4-88. [Google Scholar] [CrossRef][Green Version]
- Anzellini, S.; Dewaele, A.; Mezouar, M.; Loubeyre, P.; Morard, G. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science 2013, 340, 464–466. [Google Scholar] [CrossRef]
- Barge, N.V.; Boehler, R. Effect of non-hydrostaticity on the α-ε transition of iron. High Press. Res. 1990, 6, 133–140. [Google Scholar] [CrossRef]
- Taylor, R.; Pasternak, M.; Jeanloz, R. Hysteresis in the high pressure transformation of bcc-to hcp-iron. J. Appl. Phys. 1991, 69, 6126–6128. [Google Scholar] [CrossRef]
- Boehler, R.; Von Bargen, N.; Chopelas, A. Melting, thermal expansion, and phase transitions of iron at high pressures. J. Geophys. Res. Solid Earth 1990, 95, 21731–21736. [Google Scholar] [CrossRef]
- Boehler, R. Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature 1993, 363, 534–536. [Google Scholar] [CrossRef]
- Godwal, B.; González-Cataldo, F.; Verma, A.; Stixrude, L.; Jeanloz, R. Stability of iron crystal structures at 0.3–1.5 TPa. Earth Planet. Sci. Lett. 2015, 409, 299–306. [Google Scholar] [CrossRef]
- Bouchet, J.; Mazevet, S.; Morard, G.; Guyot, F.; Musella, R. Ab initio equation of state of iron up to 1500 GPa. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 094102. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Skorodumova, N.V.; Rosengren, A.; Johansson, B. Elastic anisotropy of Earth’s inner core. Science 2008, 319, 797–800. [Google Scholar] [CrossRef]
- Ping, Y.; Coppari, F.; Hicks, D.; Yaakobi, B.; Fratanduono, D.; Hamel, S.; Eggert, J.; Rygg, J.; Smith, R.; Swift, D.; et al. Solid iron compressed up to 560 GPa. Phys. Rev. Lett. 2013, 111, 065501. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Smith, R.F.; Eggert, J.H.; Braun, D.G.; Boehly, T.R.; Reed Patterson, J.; Celliers, P.M.; Jeanloz, R.; Collins, G.W.; Duffy, T.S. Ramp compression of iron to 273 GPa. J. Appl. Phys. 2013, 114, 023513. [Google Scholar] [CrossRef]
- Mao, H.; Xu, J.; Struzhkin, V.; Shu, J.; Hemley, R.; Sturhahn, W.; Hu, M.; Alp, E.; Vocadlo, L.; Alfè, D.; et al. Phonon density of states of iron up to 153 gigapascals. Science 2001, 292, 914–916. [Google Scholar] [CrossRef]
- Sturhahn, W.; Toellner, T.; Alp, E.; Zhang, X.; Ando, M.; Yoda, Y.; Kikuta, S.; Seto, M.; Kimball, C.; Dabrowski, B. Phonon density of states measured by inelastic nuclear resonant scattering. Phys. Rev. Lett. 1995, 74, 3832. [Google Scholar] [CrossRef]
- Hu, M.; Sturhahn, W.; Toellner, T.; Hession, P.; Sutter, J.; Alp, E. Data analysis for inelastic nuclear resonant absorption experiments. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 428, 551–555. [Google Scholar] [CrossRef]
- Lubbers, R.; Grunsteudel, H.; Chumakov, A.; Wortmann, G. Density of phonon states in iron at high pressure. Science 2000, 287, 1250–1253. [Google Scholar] [CrossRef]
- Körmann, F.; Grabowski, B.; Dutta, B.; Hickel, T.; Mauger, L.; Fultz, B.; Neugebauer, J. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. Phys. Rev. Lett. 2014, 113, 165503. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, H.; Crain, J.; Guo, G.; Chen, H.; Lee, C.; Chang, K.; Shih, H. Magnetism and mechanical stability of α-iron. Phys. Rev. B 2002, 66, 052420. [Google Scholar] [CrossRef]
- Vočadlo, L.; Alfè, D.; Gillan, M.; Wood, I.; Brodholt, J.; Price, G.D. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core. Nature 2003, 424, 536–539. [Google Scholar] [CrossRef]
- Lebert, B.W.; Gorni, T.; Casula, M.; Klotz, S.; Baudelet, F.; Ablett, J.M.; Hansen, T.C.; Juhin, A.; Polian, A.; Munsch, P.; et al. Epsilon iron as a spin-smectic state. Proc. Natl. Acad. Sci. USA 2019, 116, 20280–20285. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Mukherjee, S. Non-collinear magnetism in iron at high pressures. Phys. Earth Planet. Inter. 2004, 143, 445–453. [Google Scholar] [CrossRef]
- Lizárraga, R.; Nordström, L.; Eriksson, O.; Wills, J. Noncollinear magnetism in the high-pressure hcp phase of iron. Phys. Rev. B—Condens. Matter Mater. Phys. 2008, 78, 064410. [Google Scholar] [CrossRef]
- Heine, M.; Hellman, O.; Broido, D. Effect of thermal lattice and magnetic disorder on phonons in bcc Fe: A first-principles study. Phys. Rev. B 2019, 100, 104304. [Google Scholar] [CrossRef]
- Pourovskii, L.; Miyake, T.; Simak, S.; Ruban, A.V.; Dubrovinsky, L.; Abrikosov, I. Electronic properties and magnetism of iron at the Earth’s inner core conditions. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 115130. [Google Scholar] [CrossRef]
- Reyes-Pulido, H.; KC, B.; Kumar, R.S.; Hemley, R.J.; Muñoz, J.A. Thermally frustrated phase transition at high pressure in B2-ordered FeV. AIP Adv. 2024, 14, 075108. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.; Botti, S.; Marques, M.A. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 2016, 145, 170901. [Google Scholar] [CrossRef]
- Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian process regression for materials and molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, C.; Li, X.; Deng, Z.; Chen, Y.; Behler, J.; Csányi, G.; Shapeev, A.V.; Thompson, A.P.; Wood, M.A.; et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 2020, 124, 731–745. [Google Scholar] [CrossRef]
- Bartók, A.P.; Kondor, R.; Csányi, G. On representing chemical environments. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 184115. [Google Scholar] [CrossRef]
- Szlachta, W.J.; Bartók, A.P.; Csányi, G. Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys. Rev. B 2014, 90, 104108. [Google Scholar] [CrossRef]
- Shapeev, A.V. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 2016, 14, 1153–1173. [Google Scholar] [CrossRef]
- Podryabinkin, E.V.; Shapeev, A.V. Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 2017, 140, 171–180. [Google Scholar] [CrossRef]
- Chen, C.; Deng, Z.; Tran, R.; Tang, H.; Chu, I.H.; Ong, S.P. Accurate force field for molybdenum by machine learning large materials data. Phys. Rev. Mater. 2017, 1, 043603. [Google Scholar] [CrossRef]
- Vočadlo, L.; Alfe, D.; Gillan, M.; Price, G.D. The properties of iron under core conditions from first principles calculations. Phys. Earth Planet. Inter. 2003, 140, 101–125. [Google Scholar] [CrossRef]
- Alfè, D.; Price, G.; Gillan, M. Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations. Phys. Rev. B 2002, 65, 165118. [Google Scholar] [CrossRef]















| Temperature (K) | Pressure (GPa) at Å | Pressure (GPa) at Å |
|---|---|---|
| 800 K | 344 GPa | 159 GPa |
| 1250 K | 346 GPa | 162 GPa |
| 2500 K | 355 GPa | 171 GPa |
| 3700 K | 362 GPa | 179 GPa |
| 5000 K | 376 GPa | 194 GPa |
| Hyperparameter | Symbol | Description | Value |
|---|---|---|---|
| Element similarity Factor | Baseline similarity assigned between atoms of different elements. Must be within (0, 1). | 0.3 | |
| Spatial adjacency scale | Controls how quickly edge weights decay with interatomic distance, affecting neighborhood range. | 1.0 | |
| Edge length sensitivity | Determines sensitivity of kernel to bond length differences, differentiating bond types. | 0.05 | |
| Random walk start Probability | s | Determines the probability of starting a random walk from each vertex. Affects kernel strength. | 250 |
| Random walk stop Probability | q | Controls the length of random walk paths. Along with , it determines neighborhood range. | 0.05 |
| Framework | Training Set Size | Supercell Size | Pressure (GPa) | Temperature (K) | Energy RMSE (meV/atom) |
|---|---|---|---|---|---|
| This work | 800 | 128 | 159–194 | 800–5000 | 5 |
| SOAP (GAP) a | 6001 | 1 | 0 | 300 | 1 |
| SOAP (GAP) a | 12,474 | 54 | 0 | 400–1400 | 1 |
| SOAP (GAP) a | 11,520 | 128 | 0 | 800 | 1 |
| MTP b | 9351 | 54 | 0 | 1000 | 30 |
| mMTP b | 22,000 | 16 | 0 | 800 | 2 |
| SNAP (B1) c | 500 | 128 | 0–12 | 0–200 | 28 |
| SNAP (B2) c | 500 | 128 | 0–15 | 200–750 | 58 |
| DeepMD-kit d | 799 | 128, 250 | 75–400 | 4000 | 3 |
| DeepMD-kit d | 640 | 128, 250 | 175–400 | 5000 | 4 |
| DeepMD-kit d | 1222 | 128, 250 | 250–400 | 6000 | 3 |
| DeepMD-kit d | 300 | 128, 250 | 350–450 | 7000 | 4 |
| DeepMD-kit d | 165 | 128, 250 | 450–650 | 7600 | 3 |
| Displacement from Equilibrium (Å) | Absolute Energy Prediction Error (meV/atom) |
|---|---|
| 0.0 | 0.0 |
| 0.1 | 0.0 |
| 0.2 | 0.1 |
| 0.3 | 0.3 |
| 0.4 | 0.3 |
| 0.5 | 0.1 |
| 0.6 | 0.7 |
| 0.7 | 0.2 |
| 0.8 | 4.0 |
| 0.9 | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayirizia, B.A.; De la Rocha, A.; Arteaga-Muñiz, V.I.; Tang, Y.-H.; De Jong, W.A.; Muñoz San Martín, J.A. Gaussian Process Regression for Machine Learning on Effective Crystal Graphs of Body-Centered Cubic Iron. Solids 2025, 6, 62. https://doi.org/10.3390/solids6040062
Ayirizia BA, De la Rocha A, Arteaga-Muñiz VI, Tang Y-H, De Jong WA, Muñoz San Martín JA. Gaussian Process Regression for Machine Learning on Effective Crystal Graphs of Body-Centered Cubic Iron. Solids. 2025; 6(4):62. https://doi.org/10.3390/solids6040062
Chicago/Turabian StyleAyirizia, Blaise Awola, Adrian De la Rocha, Valeria I. Arteaga-Muñiz, Yu-Hang Tang, Wibe A. De Jong, and Jorge A. Muñoz San Martín. 2025. "Gaussian Process Regression for Machine Learning on Effective Crystal Graphs of Body-Centered Cubic Iron" Solids 6, no. 4: 62. https://doi.org/10.3390/solids6040062
APA StyleAyirizia, B. A., De la Rocha, A., Arteaga-Muñiz, V. I., Tang, Y.-H., De Jong, W. A., & Muñoz San Martín, J. A. (2025). Gaussian Process Regression for Machine Learning on Effective Crystal Graphs of Body-Centered Cubic Iron. Solids, 6(4), 62. https://doi.org/10.3390/solids6040062

