A low-grade uranium-gold polymetallic ore is associated with many rare elements, such as beryllium (Be), zirconium (Zr), thorium (Th), and cerium (Ce). It has potential development and utilization value. In order to improve the development and utilization rate of a low-grade uranium-gold polymetallic
[...] Read more.
A low-grade uranium-gold polymetallic ore is associated with many rare elements, such as beryllium (Be), zirconium (Zr), thorium (Th), and cerium (Ce). It has potential development and utilization value. In order to improve the development and utilization rate of a low-grade uranium-gold polymetallic ore, beryllium (Be) in low-grade uranium-gold polymetallic ore was extracted by a combined method of (NH)
2SO
4 and Al
2(SO
4)
3. The effects of different concentrations of (NH
4)
2SO
4 solution on the leaching of beryllium (Be) in low-grade uranium-gold polymetallic ore with different particle sizes after sieving were studied; microstructure and physicochemical analyses were carried out. The leaching mechanism of beryllium (Be) was revealed. The experimental results showed that when the low-grade uranium-gold polymetallic ore in (NH)
2SO
4 solution is 6 g/L and Al
2(SO
4)
3 is 3 g/L, the particle size of the ore sample is 0.01 mm, the concentration of beryllium (Be) in the leaching solution reaches 0.521 mg/L after 3 days of leaching, the concentration of beryllium (Be) in the leaching solution of the sample without Al
2(SO
4)
3 solution is 0.007 mg/L, and the leaching rate of beryllium (Be) reaches 98.6%. SEM and XRD analyses showed that the silicate composition in the sample after leaching was obviously destroyed compared with the control group when the (NH)
2SO
4 solution was 6 g/L, which increased the contact area on the surface of the ore sample and promoted the leaching of beryllium (Be) in the uranium ore sample. The research results lay a theoretical foundation for the development and extraction of beryllium (Be) associated with low-grade uranium-gold polymetallic ore.
Full article