Utilizing Iron Ore Tailings for the Development of a Sustainable Alkali-Activated Binder
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Material Characterization
2.2.2. Experimental Program and Statistical Analysis
2.2.3. Molding of the Specimens
2.2.4. Unconfined Compressive Strength
2.2.5. Mineralogy, Chemical Bond Analysis, and Leaching
3. Results and Discussion
3.1. Mechanical Behavior
3.2. Mineralogy and Chemical Bond Analysis
3.3. Leaching Behavior
4. Concluding Remarks
- (a)
- The study on binder dosage demonstrated the combined influence of carbide lime and sodium silicate solution (Na2SiO3) on compressive strength. The best mechanical performance (0.33 MPa at 7 days of curing) was achieved with the mixture containing 20% sodium silicate and 10% carbide lime. This result not only confirms the feasibility of using iron ore tailings as a precursor for alkali-activated binders but also highlights the potential for optimizing low-cost, high-performance mixtures. This finding contributes to filling the research gap regarding the use of industrial waste as a raw material for sustainable and efficient binder production.
- (b)
- The chemical and mineralogical characterization of the samples, which indicated the formation of N-A-S-H and C-A-S-H gels, is essential for understanding the reaction mechanisms and structure of alkali-activated binders. These discoveries provide valuable insights into the material’s behavior over time, contributing to bridging the knowledge gap on how the properties of alkali-activated binders can be tailored using secondary materials, such as iron ore tailings.
- (c)
- The fact that the binder samples showed no metal toxicity and partially met the leaching quality limits is a significant result from an environmental perspective. This confirms that the reuse of iron ore tailings, in combination with carbide lime and sodium silicate, offers a safe alternative for utilizing these industrial residues. It also contributes to reducing the environmental impact associated with the improper disposal of tailings and industrial waste. This approach not only promotes circular economy practices but also mitigates the negative effects of industrial residues in landfills and water bodies, underscoring a clear environmental advantage by avoiding the extraction of natural raw materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Medina, G.S.; Farenzena, H.P.; Bruschi, G.J.; Rodrigues, B.A.; Silva, J.P.S.; Festugato, L.; Consoli, N.C. The Behaviour of Hydraulically Disposed Silty Iron Ore Tailings Under Static and Cyclic Loading. Geotech. Geol. Eng. 2024, 42, 4205–4223. [Google Scholar] [CrossRef]
- USGS. Mineral Commodities Summary 2024. U.S. Geological Survey: Reston, Virginia, USA, 2024. 212p. Available online: http://pubs.er.usgs.gov/publication/mcs2023 (accessed on 20 November 2024).
- Dauce, P.D.; de Castro, G.B.; Lima, M.M.F.; Lima, R.M.F. Characterisation and magnetic concentration of an iron ore tailings. J. Mater. Res. Technol. 2019, 8, 1052–1059. [Google Scholar] [CrossRef]
- Saldanha, R.B.; Caicedo, A.M.L.; de Araújo, M.T.; Scheuermann Filho, H.C.; Moncaleano, C.J.; Silva, J.P.S.; Consoli, N.C. Potential use of iron ore tailings for binder production: A life cycle assessment. Constr. Build. Mater. 2023, 365, 130008. [Google Scholar] [CrossRef]
- Hu, L.; Wu, H.; Zhang, L.; Zhang, P.; Wen, Q. Geotechnical Properties of Mine Tailings. J. Mater. Civ. Eng. 2017, 29, 04016220. [Google Scholar] [CrossRef]
- Goulart Bezerra, C.; Abelha Rocha, C.A.; de Siqueira, I.S.; Toledo Filho, R.D. Feasibility of iron-rich ore tailing as supplementary cementitious material in cement pastes. Constr. Build. Mater. 2021, 303, 124496. [Google Scholar] [CrossRef]
- Bruschi, G.J.; dos Santos, C.P.; Filho, H.C.S.; da Silva Martinatto, C.; Schulz, L.R.; Silva, J.P.S.; Consoli, N.C. Mechanical and Microstructural Response of Iron Ore Tailings under Low and High Pressures Considering a Wide Range of Molding Characteristics. Mining 2023, 3, 712–730. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40. [Google Scholar] [CrossRef]
- Farenzena, H.P.; Bruschi, G.J.; Medina, G.S.; de Sousa Silva, J.P.; Lotero, A.; Consoli, N.C. Iron ore tailings stabilization with alternative alkali-activated cement for dry stacking: Mechanical and microstructural insights. Can. Geotech. J. 2024, 61, 649–667. [Google Scholar] [CrossRef]
- Lima, F.S.; Gomes, T.C.F.; Moraes, J.C.B. Effect of coffee husk ash as alkaline activator in one-part alkali-activated binder. Constr. Build. Mater. 2023, 362, 129799. [Google Scholar] [CrossRef]
- Bruschi, G.J.; dos Santos, C.P.; Tonini de Araújo, M.; Ferrazzo, S.T.; Marques, S.F.V.; Consoli, N.C. Green Stabilization of Bauxite Tailings: Mechanical Study on Alkali-Activated Materials. J. Mater. Civ. Eng. 2021, 33, 06021007. [Google Scholar] [CrossRef]
- Pereira dos Santos, C.; Bruschi, G.J.; Mattos, J.R.G.; Consoli, N.C. Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash. Transp. Geotech. 2022, 32, 100704. [Google Scholar] [CrossRef]
- Queiróz, L.C.; Batista, L.L.S.; Souza, L.M.P.; Lima, M.D.; Danieli, S.; Bruschi, G.J.; Bergmann, C.P. Alkali-activated system of carbide lime and rice husk for granular soil stabilisation. Proc. Inst. Civ. Eng. Gr. Improv. 2023, 176, 279–294. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Wang, H. Eco-friendly solid waste-based cementitious material containing a large amount of phosphogypsum: Performance optimization, micro-mechanisms, and environmental properties. J. Clean. Prod. 2024, 471, 143335. [Google Scholar] [CrossRef]
- Levandoski, W.M.K.; Ferrazzo, S.T.; Bruschi, G.J.; Consoli, N.C.; Korf, E.P. Mechanical and microstructural properties of iron mining tailings stabilized with alkali-activated binder produced from agro-industrial wastes. Sci. Rep. 2023, 13, 15754. [Google Scholar] [CrossRef]
- Jiang, X.; Lang, L.; Liu, S.; Mu, F.; Wang, Y.; Zhang, Z.; Han, L.; Duan, S.; Wang, P.; Li, J. Stabilization of iron ore tailing with low-carbon lime/carbide slag-activated ground granulated blast-furnace slag and coal fly ash. Constr. Build. Mater. 2024, 413, 134946. [Google Scholar] [CrossRef]
- Yousaf, A.; Al Rashid, A.; Koç, M. 3D printing of alkali-activated geopolymers for sustainable and circular economy advancements. Circ. Econ. 2024, 3, 100101. [Google Scholar] [CrossRef]
- Komkova, A.; Habert, G. Optimal supply chain networks for waste materials used in alkali-activated concrete fostering circular economy. Resour. Conserv. Recycl. 2023, 193, 106949. [Google Scholar] [CrossRef]
- NBR 6459; Solo—Determinação do Limite de Liquidez. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2016.
- NBR 7180; Solo—Determinação do Limite de Plasticidade. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2016.
- NBR 6508; Grãos de Solos Que Passam na Peneira de 4,8 mm—Determinação de Massa Específica. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 1984.
- NBR 7182; Solo—Ensaio de Compactação. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2016.
- ISO 13320; Particle Size Analysis—Laser Diffraction Methods. ISO—International Organization for Standardization: Geneva, Switzerland, 2020.
- NBR 16605; Cimento Portland e Outros Materiais em pó—Determinação da Massa Específica. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2017.
- Pelisser, G.; Ferrazzo, S.T.; Mota, J.D.; dos Santos, C.P.; Pelisser, C.; Rosa, F.D.; Korf, E.P. Rice husk ash-carbide lime as an alternative binder for waste foundry sand stabilization. Environ. Sci. Pollut. Res. 2023, 30, 42176–42191. [Google Scholar] [CrossRef]
- USEPA Method 1311; Toxicity Characteristic Leaching Procedure. Hazardous Waste Test Methods/SW-846. USEPA—United States Environmental Protection Agency: Washington, DC, USA, 1992.
- NBR 10004; Resíduos Sólidos—Classificação. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- NBR 10005; Procedimento Para Obtenção de Extrato Lixiviado de Resíduos Sólidos. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- NBR 10006; Procedimento Para Obtenção de Extrato Solubilizado de Resíduos Sólidos. ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004.
- Bruschi, G.J.; Santos, C.P.; Levandoski, W.M.K.; Ferrazzo, S.T.; Korf, E.P.; Saldanha, R.B.; Consoli, N.C. Leaching assessment of cemented bauxite tailings through wetting and drying cycles of durability test. Environ. Sci. Pollut. Res. 2022, 29, 59247–59262. [Google Scholar] [CrossRef]
- Falah, M.; Obenaus-Emler, R.; Kinnunen, P.; Illikainen, M. Effects of Activator Properties and Curing Conditions on Alkali-Activation of Low-Alumina Mine Tailings. Waste Biomass Valorizat. 2020, 11, 5027–5039. [Google Scholar] [CrossRef]
- ASTM D6276; Standard Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement for Soil Stabilization. ASTM International: West Conshohocken, PA, USA, 2019.
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A. An overview of the chemistry of alkali-activated cement-based binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Sawston, UK, 2015; pp. 19–47. ISBN 9781782422884. [Google Scholar]
- Pompermaier, C.L.; Ferrazzo, S.T.; Levandoski, W.M.K.; Bruschi, G.J.; Prietto, P.D.M.; Korf, E.P. Stabilization of waste foundry sand with alkali-activated binder: Mechanical behavior, microstructure and leaching. Constr. Build. Mater. 2024, 444, 137772. [Google Scholar] [CrossRef]
- ASTM C39/C39M; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2020.
- Padilla-Encinas, P.; Palomo, A.; Blanco-Varela, M.T.; Fernández-Jiménez, A. Calcium sulfoaluminate clinker hydration at different alkali concentrations. Cem. Concr. Res. 2020, 138, 106251. [Google Scholar] [CrossRef]
- BRASIL. Conselho Nacional do Meio Ambiente. Resolução nº 460, de 30 de Dezembro de 2013; Diário Oficial da União: Brasília, Brazil, 2013; p. 153. [Google Scholar]
- VROM. Circular on Target Values and Intervention Values for Soil Remediation; Dutch Target and Intervention Values, 2000 (The New Dutch List); VROM—Ministry of Housing, Spatial Planning and the Environment: The Hague, The Netherlands, 2000. [Google Scholar]
- USEPA. Ground Water and Drinking Water: National Primary Drinking Water Regulations. USEPA—United States Environmental Protection Agency. 2024. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Organic (accessed on 20 November 2024).
- Lotero, A.; Moncaleano, C.J.; Consoli, N.C. Alkali-activated red ceramic wastes-carbide lime blend: An alternative alkaline cement manufactured at room temperature. J. Build. Eng. 2023, 65, 105663. [Google Scholar] [CrossRef]
- Consoli, N.C.; Pedroso de Oliveira, J.; Lotero, A.; Scheuermann Filho, H.C.; Nuñéz, V. One-part alkali-activated GGBFS as a cement for enhancing compacted filtered iron ore tailings disposal by stacking. Transp. Geotech. 2024, 48, 101306. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, Y.; Li, X.; Yang, X.; Rao, F.; Zhong, L. Durability of alkali-activated materials with different C–S–H and N-A-S-H gels in acid and alkaline environment. J. Mater. Res. Technol. 2022, 16, 619–630. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Zhu, H.; Zhang, Y.; Provis, J.L.; Wang, H. Effect of drying procedures on pore structure and phase evolution of alkali-activated cements. Cem. Concr. Compos. 2019, 96, 194–203. [Google Scholar] [CrossRef]
- Elói, F.P.F. Ativação Alcalina do Rejeito de Barragem de Minério de Ferro Com Adição de Sílica Ativa. Ph.D. Thesis, Programa de Pós-Graduação em Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2020. [Google Scholar]
- Geraldo, R.H. Aglomerante Álcali-Ativado de Parte Única: Obtenção, Composição, Propriedades e Durabilidade. Ph.D. Thesis, Arquitetura e Urbanismo, Faculdade de Engenharia Civil, Universidade Estadual de Campinas, Campinas, Brazil, 2020. [Google Scholar]
- Li, W.; Yi, Y. Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag. Constr. Build. Mater. 2020, 238, 117713. [Google Scholar] [CrossRef]
- Oh, J.E.; Monteiro, P.J.M.; Jun, S.S.; Choi, S.; Clark, S.M. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 2010, 40, 189–196. [Google Scholar] [CrossRef]
- Ben Haha, M.; Le Saout, G.; Winnefeld, F.; Lothenbach, B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011, 41, 301–310. [Google Scholar] [CrossRef]
- Moukannaa, S.; Bagheri, A.; Benzaazoua, M.; Sanjayan, J.G.; Pownceby, M.I.; Hakkou, R. Elaboration of alkali activated materials using a non-calcined red clay from phosphate mines amended with fly ash or slag: A structural study. Mater. Chem. Phys. 2020, 256, 123678. [Google Scholar] [CrossRef]
- Provis, J.L.; Deventer, J.S.J. Geopolymers: Structure, Processing, Properties and Industrial Applications; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 1–454. [Google Scholar]
- Robayo, R.A.; Mulford, A.; Munera, J.; Mejía de Gutiérrez, R. Alternative cements based on alkali-activated red clay brick waste. Constr. Build. Mater. 2016, 128, 163–169. [Google Scholar] [CrossRef]
- Figueiredo, R.A.M.; Silveira, A.B.M.; Melo, E.L.P.; Costa, G.Q.G.; Brandão, P.R.G.; Aguilar, M.T.P.; Henriques, A.B.; Mazzinghy, D.B. Mechanical and chemical analysis of one-part geopolymers synthesised with iron ore tailings from Brazil. J. Mater. Res. Technol. 2021, 14, 2650–2657. [Google Scholar] [CrossRef]
- Chukanov, N.V. IR Spectra of Minerals and Reference Samples Data. In Infrared Spectra of Mineral Species; Springer: Dordrecht, The Netherlands, 2014; pp. 21–1701. ISBN 9789400771284. [Google Scholar]
- Queiróz, L.C.; Miguel, G.D.; Bruschi, G.J.; de Lima, M.D.S. Macro–Micro Characterization of Green Stabilized Alkali-Activated Sand. Geotech. Geol. Eng. 2022, 40, 3763–3778. [Google Scholar] [CrossRef]
- Kaze, R.C.; Beleuk à Moungam, L.M.; Cannio, M.; Rosa, R.; Kamseu, E.; Melo, U.C.; Leonelli, C. Microstructure and engineering properties of Fe2O3(FeO)-Al2O3-SiO2 based geopolymer composites. J. Clean. Prod. 2018, 199, 849–859. [Google Scholar] [CrossRef]
- Levandoski, W.M.K.; Ferrazzo, S.T.; Piovesan, M.A.; Bruschi, G.J.; Consoli, N.C.; Korf, E.P. Long-term performance: Strength and metal encapsulation in alkali-activated iron ore tailings. Environ. Sci. Pollut. Res. 2024, 31, 47071–47083. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. FTIR study of the sol-gel synthesis of cementitious gels: C-S-H and N-A-S-H. J. Sol-Gel. Sci. Technol. 2008, 45, 63–72. [Google Scholar] [CrossRef]
- Sun, K.; Ali, H.A.; Xuan, D.; Poon, C.S. Sulfuric acid resistance behaviour of alkali-activated slag and waste glass powder blended precursors. Cem. Concr. Compos. 2024, 145, 105319. [Google Scholar] [CrossRef]
- Srinivasamurthy, L.; Chevali, V.S.; Zhang, Z.; Wang, H. Effect of fly ash to slag ratio and Na2O content on leaching behaviour of fly Ash/Slag based alkali activated materials. Constr. Build. Mater. 2023, 383, 131234. [Google Scholar] [CrossRef]
- Provis, J.L.; Bernal, S.A. Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Yi, Z.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings. Part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material. J. Hazard. Mater. 2010, 174, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzo, S.T.; de Araújo, M.T.; Bruschi, G.J.; Chaves, H.M.; Korf, E.P.; Consoli, N.C. Mechanical and environmental behavior of waste foundry sand stabilized with alkali-activated sugar cane bagasse ash-eggshell lime binder. Constr. Build. Mater. 2023, 383, 131313. [Google Scholar] [CrossRef]
- Komonweeraket, K.; Cetin, B.; Benson, C.H.; Aydilek, A.H.; Edil, T.B. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Waste Manag. 2015, 38, 174–184. [Google Scholar] [CrossRef] [PubMed]
Property | IOT | CL |
---|---|---|
Specific unit weight (kN/m3) | 36.0 | 23.2 |
Liquid limit (%) | 5.16 | - |
Plasticity limit (%) | - | - |
Plasticity index (%) | Non-plastic | Non-plastic |
Dry unit weight-modified compaction energy (kN/m3) | 26.98 | - |
Optimum moisture content-modified compaction energy (%) | 8.68 | - |
Oxides (%) | Fe2O3 | SiO2 | Al2O3 | MnO | K2O | TiO2 | P2O5 | MgO | CaO | LOI * |
---|---|---|---|---|---|---|---|---|---|---|
IOT | 70.0 | 14.6 | 7.50 | 0.31 | 0.25 | 0.25 | 0.21 | 0.19 | - | 6.63 |
CL [25] | 0.67 | 2.62 | 0.27 | 0.06 | 0.12 | - | - | 22.50 | 52.5 | 21.1 |
Element | IOTs | CL (mg/L) [30] | NBR 10004 (Annex F) |
---|---|---|---|
Ag | 0 | 1.22 | 5 |
As | 0 | 0.60 | 1 |
Ba | 0.99 | 0.42 | 70 |
Cd | 0 | 0.05 | 0.5 |
Cr | 0 | 0.18 | 5 |
Hg | 0 | 0.54 | 0.1 |
Pb | 0 | 0.95 | 1 |
Se | 0.01 | 2.40 | 1 |
Element | IOTs (mg/L) | CL (mg/L) [30] | NBR 10004 (Annex G) |
---|---|---|---|
Ag | 0 | 0.41 | 0.05 |
Al | 0.01 | 19.10 | 0.2 |
As | 0 | 0.26 | 0.01 |
Ba | 0.29 | 0.84 | 0.7 |
Cd | 0 | 0.02 | 0.005 |
Cr | 0 | 0.09 | 0.05 |
Cu | 0 | 0.80 | 2 |
Fe | 0 | 0.09 | 0.3 |
Hg | 0 | 0.21 | 0.001 |
Mn | 3.64 | - | 0.1 |
Na | 1.82 | 13.80 | 200 |
Pb | 0 | 0.42 | 0.01 |
Se | 0.003 | 0.96 | 0.01 |
Zn | 0.006 | 0.02 | 5 |
Factors | Levels | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Sodium silicate (%) | 10 | 15 | 20 | 25 | 30 |
Carbide lime (%) | 5.0 | 7.5 | 10 | - | - |
Element | 5% CL 10% SS | 10% CL 20% SS | IOT | CL [30] | NBR 10004 (Annex F) Limit 1 | CONAMA 460 Limit 2 | Dutch List Limit 3 | EPA Limit 4 |
---|---|---|---|---|---|---|---|---|
Ag | 0 | 0 | 0 | 1.22 | 5 | 0.05 | - | - |
Al | 0 | 0 | 0 | * | - | 3.5 | - | - |
As | 0 | 0 | 0 | 0.60 | 1 | 0.01 | 0.01 | - |
Ba | 0 | 0.34 | 0.99 | 0.42 | 70 | 0.7 | 0.05 | 2 |
Cd | 0 | 0 | 0 | 0.05 | 0.5 | 0.005 | 0.0004 | 0.005 |
Cr | 0 | 0 | 0 | 0.18 | 5 | 0.05 | 0.001 | - |
Cu | 0.11 | 0 | 0 | * | - | 2 | 0.015 | 1.3 |
Fe | 0 | 0 | 0 | * | - | 2.45 | - | - |
Hg | 0 | 0 | 0 | 0.54 | 0.1 | 0.001 | 0.0005 | 0.02 |
Mn | 0 | 0 | 15.86 | * | - | 0.4 | - | - |
Pb | 0 | 0 | 0 | 0.95 | 1 | 0.01 | 0.015 | 0 |
Se | 0 | 0 | 0.01 | 2.40 | 1 | 0.01 | - | 0.05 |
Zn | 0 | 0 | 0.077 | * | - | 1.05 | 0.065 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga, F.P.d.; Levandoski, W.M.K.; Bruschi, G.J.; Krogel, M.; Piovesan, M.A.; Pelissaro, D.T.; Prietto, P.D.M.; Korf, E.P. Utilizing Iron Ore Tailings for the Development of a Sustainable Alkali-Activated Binder. Mining 2025, 5, 26. https://doi.org/10.3390/mining5020026
Veiga FPd, Levandoski WMK, Bruschi GJ, Krogel M, Piovesan MA, Pelissaro DT, Prietto PDM, Korf EP. Utilizing Iron Ore Tailings for the Development of a Sustainable Alkali-Activated Binder. Mining. 2025; 5(2):26. https://doi.org/10.3390/mining5020026
Chicago/Turabian StyleVeiga, Fabiane Paschoal da, William Mateus Kubiaki Levandoski, Giovani Jordi Bruschi, Mariana Krogel, Maria Alice Piovesan, Deise Trevizan Pelissaro, Pedro Domingos Marques Prietto, and Eduardo Pavan Korf. 2025. "Utilizing Iron Ore Tailings for the Development of a Sustainable Alkali-Activated Binder" Mining 5, no. 2: 26. https://doi.org/10.3390/mining5020026
APA StyleVeiga, F. P. d., Levandoski, W. M. K., Bruschi, G. J., Krogel, M., Piovesan, M. A., Pelissaro, D. T., Prietto, P. D. M., & Korf, E. P. (2025). Utilizing Iron Ore Tailings for the Development of a Sustainable Alkali-Activated Binder. Mining, 5(2), 26. https://doi.org/10.3390/mining5020026