You are currently viewing a new version of our website. To view the old version click .
  • Tracked forImpact Factor
  • 4.0CiteScore
  • 20 daysTime to First Decision

Mining

Mining is an international, peer-reviewed, open access journal on mining science and engineering published quarterly online by MDPI.

All Articles (243)

Underground pumped hydro storage (UPHS) in solution-mined salt caverns offers a promising approach to address the intermittency of renewable energy in flat geological regions such as Southern Ontario, Canada. This work presents the first fully coupled thermo-hydro-mechanical (THM) numerical model of a two-cavern UPHS system in Southern Ontario, providing a foundational assessment of long-term cavern stability and brine leakage behavior under cyclic operation. The model captures the key interactions among deformation, leakage, and temperature effects governing cavern stability, evaluating cyclic brine injection–withdrawal at operating temperatures of 10 °C, 15 °C, and 20 °C over a five-year period. Results show that plastic deformation is constrained to localized zones at cavern–shale interfaces, with negligible risk of tensile failure. Creep deformation accelerates with temperature, yielding maximum strains of 2.6–3.2% and cumulative cavern closure of 1.8–2.6%, all within engineering safety thresholds. Leakage predominantly migrates through limestone interlayers, while shale contributes only local discharge pathways. Elevated temperature enhances leakage due to reduced brine viscosity, but cumulative volumes remain very low, confirming the sealing capacity of bedded salt. Overall, lower operating temperatures minimize both convergence and leakage, ensuring greater stability margins, indicating that UPHS operation should preferentially adopt lower brine temperatures to balance storage efficiency with long-term cavern stability. These findings highlight the feasibility of UPHS in Ontario’s salt formations and provide design guidance for balancing storage performance with geomechanical safety.

3 November 2025

Detailed lithology distribution of the Salina Formation. The same color indicates the same rock type, while the red box highlights the stratum corresponding to Unit B [17].

Aluminum’s unique properties have led to its widespread use across multiple industries, including transportation, aviation, power generation, construction, and food packaging. In recent years, global aluminum consumption has risen significantly, with China experiencing particularly sharp growth in both production and demand. In Russia, the aluminum industry is dominated by UC RUSAL, which consolidates all Russian aluminum and alumina production facilities, along with several international operations and mining assets. Despite its global presence, the company remains heavily reliant on imported raw materials (approximately 50%) for alumina production, resulting in reduced operational efficiency and declining output. This dependency has necessitated the exploration of strategies to diversify raw material sources across different stages of the aluminum production value chain. This study identifies and classifies key diversification options for global aluminum companies, focusing on secondary aluminum production, primary aluminum production, and alumina extraction from mined minerals, industrial waste, and by-products. The options were evaluated based on predefined criteria (feasibility, cost per Mg of alumina, logistics, alumina output, and economic security), and two options were selected. The research substantiates the feasibility of diversifying production through nepheline utilization. For the medium term, an economic efficiency assessment was conducted for a proposed 30% capacity expansion at the Pikalevo Alumina Refinery. Additionally, long-term opportunities for increasing aluminum output were identified, including leveraging foreign assets while accounting for associated risks.

29 October 2025

Aluminum production stages [compiled by the authors].

The concept of urban mining refers to the recovery and valorization of valuable resources from urban and industrial waste, contributing to circular economy principles. Within this framework, the present study provides a critical review of alkali-activated binders incorporating bivalve mollusk shells as alternative calcium sources. Shells from oysters, scallops, mussels, clams, cockles, and periwinkles were examined, either in their natural or calcined forms, for use as calcium sources, alkaline activators, or fillers in low-carbon binders. The review evaluates key processing parameters, including precursor composition, type and concentration of alkaline activators, curing conditions, and calcination temperatures, and compares the resulting mechanical, chemical, and microstructural properties. In addition, several studies report applications of these binders in soil stabilization and heavy metal immobilization, demonstrating performances comparable to Portland cement. The findings confirm the technical potential of mollusk shell residues and their contribution to the circular economy by diverting aquaculture waste from landfills and marine environments. Nonetheless, significant knowledge gaps persist, including the limited investigation of non-oyster species, the absence of field-scale studies, and the lack of resource mapping, life cycle, or economic assessments. This synthesis highlights preliminary insights, such as optimal calcination temperatures between 700 and 900 °C and effective combinations with silica and alumina-rich residues. Overall, it outlines a pathway toward transforming an underutilized waste stream into sustainable and technically viable construction materials.

29 October 2025

Flowchart with the exclusion process and selection of the articles.

Study develops and field-validates a SCADA-based real-time monitoring system to reduce unplanned dilution and hanging-wall over-break in underground long-hole stoping at a Zimbabwean gold mine. The objectives were to detect and constrain drilling deviation in real time, quantify the impact on stope stability and dilution, and evaluate operational and economic effects. The system integrates IMU inclinometers (hole angle), rotary encoders (depth), and LiDAR (collar spacing) with a Siemens S7 PLC (RS Americas, Fort Worth, TX, USA) and AVEVA™ InTouch HMI 2023 R2. Field trials across three production stopes (12L, 14L, 15L) compared baseline manual monitoring to SCADA control. Mean angular deviation fell from 0.8–1.6° to 0.2–0.3°, length deviation from 0.8–1.1 m to 0.05–0.08 m, and positional error from 0.25–0.32 m to 0.04–0.06 m; major collapses were eliminated, and ELOS dropped (e.g., 0.20 m to 0.05 m). Dilution decreased from 25% (typical 21–26%) to 16–18%, with mill feed grade rising from 1.90 to 2.25 g/t; production rates were maintained, with brief auto-stops in 5% of holes and rapid operator correction. Real-time drilling control materially reduces unplanned dilution and improves wall stability without productivity penalties, yielding compelling economics.

22 October 2025

Regional geological setting of the mine [6].

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Mining Innovation
Reprint

Mining Innovation

Editors: Krzysztof Skrzypkowski, René Gómez, Fhatuwani Sengani, Derek B. Apel, Faham Tahmasebinia, Jianhang Chen
Envisioning the Future of Mining
Reprint

Envisioning the Future of Mining

Editors: Juan M Menéndez-Aguado, Oscar Jaime Restrepo Baena, Jessica M. Smith

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Mining - ISSN 2673-6489Creative Common CC BY license