Retrieval of Soil Moisture Using Time Series of Radar and Optical Remote Sensing Data at 10 m Resolution †
Abstract
:1. Introduction
2. Materials and Method
2.1. Case Study
- The soil moisture of the stations should be measured at a depth of 5 cm;
- A large part of the target area includes agricultural land;
- The stations are located in different vegetation;
- All the stations are in the same image of the radar and optical data.
2.2. Data Collection
2.2.1. Radar Data
- Radiometric calibration;
- Thermal noise removal;
- Terrain correction using SRTM DEM at 30 m.
2.2.2. Optical Data
2.2.3. Ground Measurement
2.3. Method
- Perform the pre-processing of the radar and optical images and calculate the NDVI and EVI.
- Calculate coefficients A and B related to the calibration of the WCM by the least squares method using the backscatter of the Sentinel-1 radar signals, NDVI and EVI obtained from the Sentinel-2 data, and soil moisture data measured at the ground stations.
- Calculate the backscatter of the radar signals from the soil surface by the WCM method, using the coefficients A and B obtained in step (2), backscatter of radar signal levels of Sentinel-1, and the NDVI and EVI obtained from the Sentinel-2 optical data.
- Retrieve soil moisture by change detection and using the backscatter of the soil surface radar data calculated in step (3) and the soil moisture data measured at the ground stations.
- Validate the change detection model results using the soil moisture data measured at the ground stations.
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yee, M.S.; Walker, J.P.; Monerris, A.; Rüdiger, C.; Jackson, T.J. On the identification of representative in situ soil moisture monitoring stations for the validation of SMAP soil moisture products in Australia. J. Hydrol. 2016, 537, 367–381. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [Google Scholar] [CrossRef]
- Dumedah, G.; Walker, J.P.; Merlin, O. Root-zone soil moisture estimation from assimilation of downscaled Soil Moisture and Ocean Salinity data. Adv. Water Resour. 2015, 84, 14–22. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote. Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Niu, R. Soil moisture estimation over Jianghan plain using ENVISAT ASAR data. In Proceedings of the Internet Conference Multimedia Technology, Ningbo, China, 29–31 October 2010; pp. 1–4. [Google Scholar]
- Karjalainen, M.; Kaartinen, H.; Hyyppä, J.; Laurila, H.; Kuittinen, R. The Use of ENVISAT Alternating Ploarization SAR Images in Agricultureal Monitoring in Compatison with RADARSAT-1 SAR Images. In Proceedings of the ISPRS Congress, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Chauhan, S.; Srivastava, H.S. Comparative evaluation of the sensitivity of multi-polarized SAR and optical data for various land cover classed. Int. J. Remote Sens. 2016, 4, 1–14. [Google Scholar]
- Gupta, V.K.; Sharma, N.; Jangid, R.A. Emission and scattering behaviour of bare and vegetative soil surfaces of different moist states by microwave remote sensing. Indian J. Radio Space Phys. 2013, 42, 42–51. [Google Scholar]
- Srivastava, H.S.; Patel, P.; Sharma, Y.; Navalgund, R.R. Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2528–2535. [Google Scholar] [CrossRef]
- Baghdadi, N.; Cerdan, O.; Zribi, M.; Auzet, V.; Darboux, F.; El Hajj, M.; Kheir, R.B. Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: Application to hydrological and erosion modeling. Hydrol. Process. 2007, 22, 9–20. [Google Scholar] [CrossRef]
- Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens. Environ. 2003, 84, 42–52. [Google Scholar] [CrossRef]
- Baghdadi, N.; Aubert, M.; Cerdan, O.; Franchistéguy, L.; Viel, C.; Martin, E.; Zribi, M.; Desprats, J.F. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France). Sensors 2007, 7, 2458–2483. [Google Scholar] [CrossRef] [PubMed]
- Santi, E.; Paloscia, S.; Pettinato, S.; Notarnicola, C.; Pasolli, E.; Pistocchi, A. Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site. Remote Sens. 2013, 5, 4961–4976. [Google Scholar] [CrossRef]
- Liu, C. Analysis of Sentinel-1 SAR Data for Mapping Standing Water in the Twente Region. Master’s Thesis, University of Twente, Twente, The Netherlands, February 2016. Available online: http://www.itc.nl/library/papers_2016/msc/wrem/cliu.pdf (accessed on 22 May 2017).
- Zribi, M.; Andre, C.; Decharme, B. A method for soil moisture estimation in Western Africa based on the ERS scatterometer. IEEE Trans. Geosci. Remote Sens. 2008, 46, 438–448. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Bai, X.; Shao, W.; Wang, J. Retrieval of Soil Moisture by Integrating Sentinel-1A and MODIS Data over Agricultural Fields. Water 2020, 12, 1726. [Google Scholar] [CrossRef]
Scenario | A | B | ||
---|---|---|---|---|
First | NDVI | EVI | −40.16 | 0.63 |
Second | EVI | NDVI | −67.31 | 0.38 |
Ground Station | MBE | ||||
---|---|---|---|---|---|
1st Scenario | 2nd Scenario | 1st Scenario | 2nd Scenario | ||
Las Arenas | 0.08340 | 0.08123 | −0.01435 | −0.01474 | 0.181 |
Paredinas | 0.03122 | 0.03800 | 0.01744 | 0.02225 | 0.031 |
Zamarron | 0.05093 | 0.04817 | 0.01444 | 0.01438 | 0.094 |
Las Bodega | 0.14884 | 0.14416 | −0.14259 | −0.13789 | 0.162 |
Carretoro | 0.03447 | 0.03817 | 0.01212 | 0.01522 | 0.054 |
Granja G | 0.03365 | 0.03176 | 0.01743 | 0.01629 | 0.032 |
Las Victorias | 0.04290 | 0.03812 | 0.01563 | 0.01512 | 0.054 |
Las Brozas | 0.03449 | 0.03291 | 0.01710 | 0.01498 | 0.035 |
El Coto | 0.06062 | 0.05807 | 0.0160 | −0.04470 | 0.111 |
MBE | MAE | |||
---|---|---|---|---|
1st scenario | 0.06807 | 0.2524 | −0.00680 | 0.05296 |
2nd scenario | 0.06626 | 0.2675 | −0.00654 | 0.05191 |
1st scenario * | 0.04943 | 0.5391 | 0.01018 | 0.04176 |
2nd scenario * | 0.04840 | 0.5453 | 0.00988 | 0.04416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atar, M.; Shah-Hosseini, R.; Ghaffari, O. Retrieval of Soil Moisture Using Time Series of Radar and Optical Remote Sensing Data at 10 m Resolution. Environ. Sci. Proc. 2024, 29, 75. https://doi.org/10.3390/ECRS2023-16861
Atar M, Shah-Hosseini R, Ghaffari O. Retrieval of Soil Moisture Using Time Series of Radar and Optical Remote Sensing Data at 10 m Resolution. Environmental Sciences Proceedings. 2024; 29(1):75. https://doi.org/10.3390/ECRS2023-16861
Chicago/Turabian StyleAtar, Mojtaba, Reza Shah-Hosseini, and Omid Ghaffari. 2024. "Retrieval of Soil Moisture Using Time Series of Radar and Optical Remote Sensing Data at 10 m Resolution" Environmental Sciences Proceedings 29, no. 1: 75. https://doi.org/10.3390/ECRS2023-16861
APA StyleAtar, M., Shah-Hosseini, R., & Ghaffari, O. (2024). Retrieval of Soil Moisture Using Time Series of Radar and Optical Remote Sensing Data at 10 m Resolution. Environmental Sciences Proceedings, 29(1), 75. https://doi.org/10.3390/ECRS2023-16861