Estimation of Cloud Water Resources in China
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Cloud Water Resource Observational Diagnostic Assessment Dataset
2.2. Coupled Model Intercomparison Project Phase 6 (CMIP6)
2.3. Random Forest
2.3.1. Introduction to Random Forest
2.3.2. Feature Selection
2.3.3. Preprocessing
2.3.4. Model Parameter Selection and Optimization
2.4. Fuzzy Logic Algorithm
3. Results
3.1. Model Validation Results
3.2. Interannual Variation Trends of Cloud Water Resources for the Next 30 Years
3.3. Distribution and Changes of Cloud Water Resources-Related Quantities for the Next 30 Years
4. Discussion
4.1. Model Bias
4.2. Uncertainty Analysis of the Forecasting Results
4.3. Discussion on the Rationality of Future Forecast Results
5. Conclusions
- (1)
- The random forest model can effectively capture the physical relationship between basic atmospheric variables (such as temperature, specific humidity, wind speed, and wind direction) and cloud water resource estimates (calculated using the balance equation). The proposed combination of random forest and fuzzy logic methods can provide estimates of cloud water resources and their overall trends for the next 30 years in China.
- (2)
- In both future scenarios, the cloud water resources (CWRs) distribution patterns for China from 2025 to 2054 are generally consistent with those from the past period of 2000–2019. The average CWRs in the next 30 years are expected to be higher than in the past, particularly under the high emission scenario. The comprehensive trend of change derived through fuzzy logic inference indicates that the areas of increased CWRs in China over the next 30 years are concentrated in the Tibetan Plateau and the northwest region. Under the high emission scenario, there is a potential for the areas of increased CWRs to expand towards the north.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, M. Cloud Water Resource and Precipitation Efficiency Evaluation over China. Ph.D. Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2013. (In Chinese). [Google Scholar]
- Benton, G.S.; Estoque, M.A. Water-Vapor Transfer over The North American Continent. J. Meteorol. 1954, 11, 462–477. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, G. Characteristics of mean water vapor content and water balance in Chinese atmosphere. Acta Meteorol. Sin. 1984, 42, 301–310. (In Chinese) [Google Scholar]
- Greenwald, T.J.; Stephens, G.L.; Christopher, S.A.; Vonder Harr, T.H. Observations of the Global Characteristics and Regional Radiative Effects of Marine Cloud Liquid Water. J. Clim. 1995, 8, 2928–2946. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Zhu, J. Climatic distribution features and trends of cloud water resources over China. Chin. J. Atmos. Sci. 2008, 32, 1094–1106. (In Chinese) [Google Scholar]
- He, X.; Song, M.; Zhou, Z. Temporal and spatial characteristics of water vapor and cloud water over the Qinghai-Xizang Plateau in summer. Plateau Meteorol. 2020, 39, 1339–1347. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, H.; Shi, M.; Wu, H.; Qi, D.; Quan, C. Cloud water resources assessment in Qinghai province based on ERA-Interim reanalysis data. J. Arid Meteorol. 2021, 39, 569–576. (In Chinese) [Google Scholar] [CrossRef]
- Li, G.; Yan, F.; Ao, J.; Mao, Z. Temporal and spatial characteristics of cloud water resources in Hainan island over the past 30 years. J. Trop. Biol. 2022, 13, 331–338. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, M.; Tan, C.; Mao, J.; Hu, Z. Quantifying the Cloud Water Resource: Basic Concepts and Characteristics. J. Meteorol. Res. 2020, 34, 1242–1255. [Google Scholar] [CrossRef]
- Cai, M.; Zhou, Y.; Liu, J.; Tan, C.; Tang, Y.; Ma, Q.; Li, Q.; Mao, J.; Hu, Z. Quantifying the Cloud Water Resource: Methods Based on Observational Diagnosis and Cloud Model Simulation. J. Meteorol. Res. 2020, 34, 1256–1270. [Google Scholar] [CrossRef]
- Tan, C.; Cai, M.; Zhou, Y.; Liu, W.; Hu, Z. Cloud Water Resource in North China in 2017 Simulated by the CMA-CPEFS Cloud Resolving Model: Validation and Quantification. J. Meteorol. Res. 2022, 36, 520–538. [Google Scholar] [CrossRef]
- Cheng, J.; You, Q.; Zhou, Y.; Cai, M.; Pepin, N.; Chen, D.; AghaKouchak, A.; Kang, S.; Li, M. Increasing cloud water resource in a warming world. Environ. Res. Lett. 2021, 16, 124067. [Google Scholar] [CrossRef]
- Cai, M.; Zhou, Y.; Liu, J.; Tang, Y.; Zhao, J.; Ou, J. Diagnostic Quantification of the Cloud Water Resource in China during 2000–2019. J. Meteorol. Res. 2022, 36, 292–310. [Google Scholar] [CrossRef]
- Cheng, J.; You, Q.; Cai, M.; Sun, J.; Zhou, Y. Cloud Water Resource over the Asian water tower in recent decades. Atmos. Res. 2022, 269, 106038. [Google Scholar] [CrossRef]
- Yu, J.; Cai, M.; Zhou, Y.; Zhao, J. Spatiotemporal Characteristics of Cloud Water Resources in Northwest China from 2000 to 2019. Acta Meteorol. Sin. 2024, 82, 476–489. (In Chinese) [Google Scholar] [CrossRef]
- He, X.; Chaney, N.; Schleiss, M.; Sheffield, J. Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res. 2016, 52, 8217–8237. [Google Scholar] [CrossRef]
- Gleick, P.H. Climate change, hydrology, and water resources. Rev. Geophys. 1989, 27, 329–344. [Google Scholar] [CrossRef]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Guo, S.; Guo, J.; Hou, Y.; Xiong, L.; Hong, X. Prediction of future runoff change based on Budyko hypothesis in Yangtze River Basin. Adv. Water Sci. 2015, 26, 151–160. (In Chinese) [Google Scholar] [CrossRef]
- Song, Z.; Xia, J.; She, D.; Li, L.; Hu, C.; Hong, S. Assessment of meteorological drought change in the 21st century based on CMIP6 multi-model ensemble projections over mainland China. J. Hydrol. 2021, 601, 126643. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, Z.; Chen, X.; Zuo, M.; Jiang, J.; Hu, S. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information. Clim. Change Res. 2021, 17, 652–663. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Chen, X.; Zhang, L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ. Res. Lett. 2020, 15, 054009. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Chen, T.; Zheng, G.; Wang, Y.; Jiang, L.; De Maeyer, P. Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos. Res. 2021, 252, 105451. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, Y.; Li, Z. Recent Changes and Future Projection of Precipitation in Northwest China. Clim. Change Res. 2022, 18, 683–694. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Sun, S.; Wang, P. Interdecadal Variation of the Number of Days with Drought in China Based on the Standardized Precipitation Evapotranspiration Index (SPEI). J. Clim. 2022, 35, 2003–2018. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, T.; Zhang, J.; Tao, L. Effects of Human Activities and Natural Forcings on Multiscale Changes of Global Land Surface Air Temperature by CMIP6 Models. Chin. J. Geophsics 2024, 67, 477–491. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.; Ma, Z. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull. 2014, 59, 412–429. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Clim. Change 2017, 144, 535–548. [Google Scholar] [CrossRef]
- Guan, Y.; Gu, X.; Slater, L.J.; Li, X.; Li, J.; Wang, L.; Tang, X.; Kong, D.; Zhang, X. Human-induced intensification of terrestrial water cycle in dry regions of the globe. NPJ Clim. Atmos. Sci. 2024, 7, 45. [Google Scholar] [CrossRef]
- Tahara, R.; Hiraga, Y.; Kazama, S. Climate change effects on the localized heavy rainfall event in northern Japan in 2022: Uncertainties in a pseudo-global warming approach. Atmos. Res. 2025, 314, 107780. [Google Scholar] [CrossRef]
- Wang, H.; Su, W. Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations. J. Geophys. Res. Atmos. 2013, 118, 683–699. [Google Scholar] [CrossRef]
- Liu, M. Research on the Change Characteristics and Uncertainty Constraint Methods of East Asian Cloud Feedback Under Future Emission Scenarios. Master’s Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, 2023. (In Chinese). [Google Scholar]
- Cesana, G.; Chepfer, H. How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett. 2012, 39, 2012GL053153. [Google Scholar] [CrossRef]
- Schlund, M.; Lauer, A.; Gentine, P.; Sherwood, S.C.; Eyring, V. Emergent constraints on equilibrium climate sensitivity in CMIP5: Do they hold for CMIP6? Earth Syst. Dyn. 2020, 11, 1233–1258. [Google Scholar] [CrossRef]
- Li, L.; Guo, Z. Short Commentary on CMIP6 Cloud Feedback Model Intercomparison Project(CFMIP). Clim. Change Res. 2019, 15, 465–468. (In Chinese) [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2000. Available online: https://rda.ucar.edu/datasets/d083002/ (accessed on 15 July 2023).
- Adler, R.; Wang, J.; Sapiano, M.; Huffman, G.; Bolvin, D.; Nelkin, E.; NOAA, C. Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 1.3 (Daily). Available online: https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-daily/access/ (accessed on 21 March 2024).
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Cai, M.; Zhou, Y.; Ou, J.; Liu, J.; Cai, Z. Study on Diagnosing Three Dimensional Cloud Region. Plateau Meteorol. 2015, 34, 1330–1344. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Li, B.; Li, L.; Feng, J.; Jia, S.; Lv, S.; Tao, F.; Guo, J. Cloud-base and cloud-top heights determined from a ground-based cloud radar in Beijing, China. Atmos. Environ. 2019, 201, 381–390. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Xin, X. Short Commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Change Res. 2019, 15, 519–525. (In Chinese) [Google Scholar] [CrossRef]
- Ho, T. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Sun, X. A scalable random forest algorithm based on MapReduce. In Proceedings of the 2013 IEEE 4th International Conference on Software Engineering and Service Science, Beijing, China, 23 May 2013; pp. 849–852. [Google Scholar] [CrossRef]
- Guo, F.; Ma, X.; Wang, T.; Chen, C. An Approach to The Hydrometeors Classification for Thunderclouds Based on the X-band Dual-polarization Doppler Weather Radar. Acta Meteorol. Sin. 2014, 72, 1231–1244. (In Chinese) [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Lim, S.; Cifelli, R.; Chandrasekar, V.; Matrosov, S.Y. Precipitation Classification and Quantification Using X-Band Dual-Polarization Weather Radar: Application in the Hydrometeorology Testbed. J. Atmos. Ocean. Technol. 2013, 30, 2108–2120. [Google Scholar] [CrossRef]
- Wu, C.; Liu, L.; Wei, M.; Xi, B.; Yu, M. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci. 2018, 35, 296–316. [Google Scholar] [CrossRef]
- Weng, Y.; Cai, W.; Wang, C. The application and future directions of the Shared Socioeconomic Pathways (SSPs). Clim. Change Res. 2020, 16, 215–222. (In Chinese) [Google Scholar] [CrossRef]
- Hu, S.; Zhou, T.; Wu, B. Accelerated warming of High Mountain Asia predicted at multiple years ahead. Sci. Bull. 2025, 70, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; You, Q.; Ma, Y.; Cao, Y.; Zhang, J.; Niu, M.; Zhang, Y. Changes in cloud amount over the Tibetan Plateau and impacts of large-scale circulation. Atmos. Res. 2021, 249, 105332. [Google Scholar] [CrossRef]
- Yan, H.; Huang, J.; He, Y.; Liu, Y.; Li, J. Atmospheric Water Vapor Budget and Its Long-Term Trend Over the Tibetan Plateau. J. Geophys. Res. Atmos. 2020, 123, e2020JD033297. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, L.; Wang, S. Spatial and Temporal Variations of Cloud Parameters over the Qinghai-Xizang Plateau during the Past Two Decades. Plateau Meteorol. 2023, 42, 1107–1118. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Duan, X.; Ma, P.; Lu, G.; Zhu, B.; Liu, X.; Yue, P.; Wang, Y.; Liu, W. The eastward expansion of the climate humidification trend in Northwest China and the synergistic influences on the circulation mechanism. Clim. Dyn. 2022, 59, 2481–2497. [Google Scholar] [CrossRef]
Model Name | Country/Institution | Grid Size |
---|---|---|
ACCESS-CM2 | Australia, Australian National University | 144 × 192 |
ACCESS-ESM1-5 | Australia, Australian National University | 144 × 192 |
BCC-CSM2-MR | China, Beijing Climate Center | 160 × 320 |
CanESM5 | Canada, Canadian Environmental Assessment Agency | 64 × 128 |
EC-Earth3 | EU, European Centre for Medium-Range Weather Forecasts | 256 × 512 |
FGOALS-g3 | China, Institute of Atmospheric Physics, Chinese Academy of Sciences | 80 × 180 |
INM-CM4-8 | Russia, Institute of Numerical Mathematics, Russian Academy of Sciences | 120 × 180 |
MPI-ESM1-2-HR | Germany, Max Planck Institute for Meteorology | 192 × 384 |
RMSE * | MAE * | CC * | |
---|---|---|---|
Statistical Regression | 4.71 | 3.34 | 0.72 |
Neural Network | 2.63 | 1.73 | 0.92 |
Random Forest | 2.42 | 1.57 | 0.94 |
Scenario Mode | Climate Model | CWRs-Mean Trend (mm/a) |
---|---|---|
SSP2-4.5 | ACCESS-CM2 | 0.0031 |
ACCESS-ESM1-5 | 0.0041 | |
BCC-CSM2-MR | 0.0085 | |
MPI-ESM1-2-HR | 0.0024 | |
FGOAL-g3 | 0.0050 | |
INM-CM4-8 | 0.0053 | |
EC-Earth3 | 0.0054 | |
CanESM5 | 0.0055 | |
SSP5-8.5 | ACCESS-CM2 | 0.0064 |
ACCESS-ESM1-5 | 0.0095 | |
BCC-CSM2-MR | 0.0085 | |
MPI-ESM1-2-HR | 0.0082 | |
FGOAL-g3 | 0.0001 | |
INM-CM4-8 | 0.0077 | |
EC-Earth3 | 0.0126 | |
CanESM5 | 0.0082 |
Trend\P | Significant Increase | Weak Increase | No Change | Weak Reduction | Significant Reduction |
---|---|---|---|---|---|
Significant | 0.9 | 0.7 | 0.5 | 0.3 | 0.1 |
Weak Significant | 0.9 | 0.7 | 0.5 | 0.3 | 0.1 |
Non Significant | 0.7 | 0.5 | 0.5 | 0.5 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhou, Y.; Cai, M.; Ou, J. Estimation of Cloud Water Resources in China. Earth 2025, 6, 31. https://doi.org/10.3390/earth6020031
Yu J, Zhou Y, Cai M, Ou J. Estimation of Cloud Water Resources in China. Earth. 2025; 6(2):31. https://doi.org/10.3390/earth6020031
Chicago/Turabian StyleYu, Jie, Yuquan Zhou, Miao Cai, and Jianjun Ou. 2025. "Estimation of Cloud Water Resources in China" Earth 6, no. 2: 31. https://doi.org/10.3390/earth6020031
APA StyleYu, J., Zhou, Y., Cai, M., & Ou, J. (2025). Estimation of Cloud Water Resources in China. Earth, 6(2), 31. https://doi.org/10.3390/earth6020031