Hidden Threats in Water: The Global Rise of Emerging Contaminants
Abstract
1. Introduction
2. Global Impact
2.1. Asia
2.2. Europe
2.3. Africa
2.4. America
2.5. Australia
2.6. Antarctica
3. Types of Emerging Contaminants and Environmental Behavior
3.1. Emerging Contaminant Types
3.2. Environmental Behavior Across EC Categories
4. Current State-of-the-Art: Detection Methods and Limitations
5. Conclusive Remarks
5.1. Future Technologies in EC Monitoring
5.2. Policy and Governance Measures
- Exorbitant expenses for quantum technologies, advanced sensors, and digital twin platforms can hamper large-scale deployment;
- Lack of internationally standardized workflows and detection limits for sensor calibration, validation, and data interoperability limits comparability across regions;
- Data governance, equitable access, and commercialization complications include the translation of research prototypes into operational systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations & Symbols
| AI | Artificial Intelligence |
| AMR | Antimicrobial Resistance |
| ARB | Antibiotic-Resistant Bacteria |
| ARGs | Antibiotic-Resistant Genes |
| As | Arsenic |
| ATZ | Atrazine |
| BPA | Bisphenol A |
| Cd | Cadmium |
| CKDu | Chronic Kidney Disease of Unknown Etiology |
| Co | Cobalt |
| CNFs | Carbon Nanofibers |
| CNTs | Carbon Nanotubes |
| Cr | Chromium |
| CR | Carcinogenic Risk |
| Cs | Cesium |
| DNA | Deoxyribonucleic Acid |
| ECs | Emerging Contaminants |
| ESA | European Space Agency |
| ESBL | Extended-Spectrum Beta-Lactamase |
| EU | European Union |
| GC-MS | Gas Chromatography-Mass Spectrometry |
| GCEW | Global Commission on the Economics of Water |
| GDP | Gross Domestic Product |
| GIS | Geographic Information System |
| GWDT | Global Water Quality Digital Twin |
| Hg | Mercury |
| HMs | Heavy Metals |
| IoTs | Internet of Things |
| LC-MS | Liquid Chromatography-Mass Spectrometry |
| LC-MS/MS | Liquid Chromatography-Tandem Mass Spectrometry |
| ML | Machine Learning |
| MRSA | Methicillin-Resistant Staphylococcus aureus |
| NFC | Near-Field Communication |
| PBDEs | Polybrominated Diphenyl Ethers |
| PCBs | Polychlorinated Biphenyls |
| Pb | Lead |
| PE | Polyethylene |
| PFAS | Per- and Polyfluoroalkyl Substances |
| PFOA | Perfluorooctanoic Acid |
| PFOS | Perfluorooctane Sulfonate |
| Phthalates | Esters of Phthalic Acid (Plasticizers) |
| PMs | Polycyclic Musks |
| PP | Polypropylene |
| PS | Polystyrene |
| PPCPs | Pharmaceuticals and Personal Care Products |
| ppb | Parts Per Billion |
| ppt | Parts Per Trillion |
| qPCR | Quantitative Polymerase Chain Reaction |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| SDGs | Sustainable Development Goals |
| TDI | Total Daily Intake |
| TENS | Triboelectric Nanosensors |
| TiO2 | Titanium Dioxide |
| UNEP | United Nations Environment Programme |
| U | Uranium |
| US-EPA | United States Environmental Protection Agency |
| UV | Ultraviolet |
| WHO | World Health Organization |
References
- Nishmitha, P.S.; Akhilghosh, K.A.; Aiswriya, V.P.; Ramesh, A.; Muthuchamy, M.; Muthukumar, A. Understanding emerging contaminants in water and wastewater: A comprehensive review on detection, impacts, and solutions. J. Hazard. Mater. Adv. 2025, 18, 100755. [Google Scholar] [CrossRef]
- Pal, D.; Prabhakar, R.; Barua, V.B.; Zekker, I.; Burlakovs, J.; Krauklis, A.; Hogland, W.; Vincevica-Gaile, Z. Microplastics in aquatic systems: A comprehensive review of its distribution, environmental interactions, and health risks. Environ. Sci. Pollut. Res. 2025, 32, 56–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Walker, G.W.; Muir, D.C.G.; Nagatani-Yoshida, K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [Google Scholar] [CrossRef]
- Harish, H.; Jegatheesan, V. A Review of Sources, Worldwide Legislative Measures and the Factors Influencing the Treatment Technologies for Contaminants of Emerging Concern (CECs). Curr. Pollut. Rep. 2025, 11, 44. [Google Scholar] [CrossRef]
- UN-EP. Evidence Rising: The Emerging Pollutants Poisoning Our Environment. 2019. Available online: https://www.unep.org/news-and-stories/story/evidence-rising-emerging-pollutants-poisoning-our-environment (accessed on 2 May 2025).
- Osei-Owusu, J.; Heve, W.K.; Duker, R.Q.; Aidoo, O.F.; Larbi, L.; Edusei, G.; Opoku, M.J.; Akolaa, R.A.; Eshun, F.; Apau, J.; et al. Assessments of microbial and heavy metal contaminations in water supply systems at the University of Environment and Sustainable Development in Ghana. Sustain. Chem. Environ. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Disner, G.R.; Tareq, S.M. Emerging water contaminants in developing countries: Detection, monitoring, and impact of xenobiotics. Front. Water 2025, 7, 1584752. [Google Scholar] [CrossRef]
- Groh, K.; vom Berg, C.; Schirmer, K.; Tlili, A. Anthropogenic Chemicals as Underestimated Drivers of Biodiversity Loss: Scientific and Societal Implications. Environ. Sci. Technol. 2022, 56, 707–710. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. npj Clean Water 2023, 6, 57. [Google Scholar] [CrossRef]
- GCEW. Global Commission on the Economics of Water. Available online: https://watercommission.org/ (accessed on 6 August 2025).
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.A.; Johnson, M.V.V.; Morton, S.L.; Perkins, D.A.K.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. In some places, in some cases, and at some times, harmful algal blooms are the greatest threat to inland water quality. Environ. Toxicol. Chem. 2017, 36, 1125–1127. [Google Scholar] [CrossRef] [PubMed]
- Kulathunga, M.R.D.L.; Wijayawardena, M.A.A.; Naidu, R.; Wimalawansa, S.J.; Rahman, M.M. Health Risk Assessment from Heavy Metals Derived from Drinking Water and Rice, and Correlation with CKDu. Front. Water 2022, 3, 786487. [Google Scholar] [CrossRef]
- Brahma, P.P.; Akter, S.; Haque, M.M.; Khirul, M.A. Probabilistic human health risk assessment of commercially supplied jar water in Gopalganj municipal area, Bangladesh. Front. Water 2024, 6, 1441313. [Google Scholar] [CrossRef]
- Thakur, R.; Nath, H.; Neog, N.; Bora, P.K.; Goswami, R. Groundwater hydrogeochemistry and potential health risk assessment through exposure to elevated arsenic in Darrang district of north bank plain of the Brahmaputra. Sci. Rep. 2024, 14, 29843. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Adimalla, N.; Pei, J.; Zhang, Z.; Liu, H. Co-occurrence of arsenic and fluoride in groundwater of Guide basin in China: Genesis, mobility and enrichment mechanism. Environ. Res. 2024, 244, 117920. [Google Scholar] [CrossRef]
- Teymoorian, T.; Delon, L.; Munoz, G.; Sauvé, S. Target and Suspect Screening Reveal PFAS Exceeding European Union Guideline in Various Water Sources South of Lyon, France. Environ. Sci. Technol. Lett. 2025, 12, 327–333. [Google Scholar] [CrossRef]
- Domínguez-García, P.; Aljabasini, O.; Barata, C.; Gómez-Canela, C. Environmental risk assessment of pharmaceuticals in wastewaters and reclaimed water from catalan main river basins. Sci. Total Environ. 2024, 949, 175020. [Google Scholar] [CrossRef]
- Tanaskovski, B.; Petrović, M.; Kljajić, Z.; Degetto, S.; Stanković, S. Analysis of major, minor and trace elements in surface sediments by X-ray fluorescence spectrometry for assessment of possible contamination of Boka Kotorska Bay, Montenegro. Maced. J. Chem. Chem. Eng. 2014, 33, 139–150. [Google Scholar] [CrossRef]
- Addis, T.Z.; Adu, J.T.; Kumarasamy, M.; Demlie, M. Occurrence of Trace-Level Antibiotics in the Msunduzi River: An Investigation into South African Environmental Pollution. Antibiotics 2024, 13, 174. [Google Scholar] [CrossRef]
- Abafe, O.A.; Lawal, M.A.; Chokwe, T.B. Non-targeted screening of emerging contaminants in South African surface and wastewater. Emerg. Contam. 2023, 9, 100246. [Google Scholar] [CrossRef]
- Ouda, M.; Kadadou, D.; Swaidan, B.; Al-Othman, A.; Al-Asheh, S.; Banat, F.; Hasan, S.W. Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review. Sci. Total Environ. 2021, 754, 142177. [Google Scholar] [CrossRef]
- Cangola, J.; Abagale, F.K.; Cobbina, S.J. A systematic review of pharmaceutical and personal care products as emerging contaminants in waters: The panorama of West Africa. Sci. Total Environ. 2024, 911, 168633. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Carrillo, M.; Abrell, L.; Ramírez-Hernández, J.; Reyes-López, J.A.; Carreón-Diazconti, C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: A review. Environ. Sci. Pollut. Res. 2020, 27, 44863–44891. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.L.; Bila, D.M.; Fonseca, E.M.; Neto, J.A.B.; Moreira, L.B.; Cavalcante, R.M. Impacts of Rapid Development in a Subtropical Region of South America (Rio de Janeiro, Brazil): Insights from Emerging Contaminants Across Various Chemical Classes. Water Air Soil Pollut. 2025, 237, 87. [Google Scholar] [CrossRef]
- Birch, G.F.; Drage, D.S.; Thompson, K.; Eaglesham, G.; Mueller, J.F. Emerging contaminants (pharmaceuticals, personal care products, a food additive and pesticides) in waters of Sydney estuary, Australia. Mar. Pollut. Bull. 2015, 97, 56–66. [Google Scholar] [CrossRef]
- Kumar, R.; Whelan, A.; Cannon, P.; Sheehan, M.; Reeves, L.; Antunes, E. Occurrence of emerging contaminants in biosolids in northern Queensland, Australia. Environ. Pollut. 2023, 330, 121786. [Google Scholar] [CrossRef]
- Alygizakis, N.; Ng, K.; Gkotsis, G.; Nika, M.-C.; Vasilatos, K.; Kostakis, M.; Oswald, P.; Savenko, O.; Utevsky, A.; Dykyi, E. Contaminants of emerging concern in Antarctica. J. Environ. Expo. Assess 2025, 4, 16. [Google Scholar] [CrossRef]
- Baglietto, M.; Mackeown, H.; Benedetti, B.; Scapuzzi, C.; Cossu, B.; Di Carro, M.; Magi, E. The anthropic impact on Antarctica: A biennial study on emerging contaminants’ occurrence. In Proceedings of the Atti del XXVIII Congresso, Milan, Italy, 26–30 August 2024. [Google Scholar]
- Bhat, A.; Ravi, K.; Tian, F.; Singh, B. Arsenic Contamination Needs Serious Attention: An Opinion and Global Scenario. Pollutants 2024, 4, 196–211. [Google Scholar] [CrossRef]
- Céspedes, R.; Petrovic, M.; Raldúa, D.; Saura, Ú.; Piña, B.; Lacorte, S.; Viana, P.; Barceló, D. Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC–ESI-MS. Anal. Bioanal. Chem. 2004, 378, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Gibi, C.; Liu, C.-H.; Anandan, S.; Wu, J.J. Recent Advances on Electrochemical Sensors for Detection of Contaminants of Emerging Concern (CECs). Molecules 2023, 28, 7916. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, X.; Zuo, Y. Research and Application of Water Treatment Technologies for Emerging Contaminants (ECs): A Pathway to Solving Water Environment Challenges. Water 2024, 16, 1837. [Google Scholar] [CrossRef]
- Chernova, E.; Russkikh, I.; Voyakina, E.; Zhakovskaya, Z. Occurrence of microcystins and anatoxin-a in eutrophic lakes of Saint Petersburg, Northwestern Russia. Oceanol. Hydrobiol. Stud. 2016, 45, 466–484. [Google Scholar] [CrossRef]
- Ateia, M.; Wei, H.; Andreescu, S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. Environ. Sci. Technol. 2024, 58, 2636–2651. [Google Scholar] [CrossRef]
- Viegas, R.M.C.; Figueiredo, D.; Mesquita, E.; Charrua, S.; Costa, C.; Lourinho, R.; Rosa, M.J. Pilot-scale demonstration of advanced wastewater treatment for direct potable water reuse for beer production. Sep. Purif. Technol. 2025, 372, 133419. [Google Scholar] [CrossRef]
- Syrmos, E.; Sidiropoulos, V.; Bechtsis, D.; Stergiopoulos, F.; Aivazidou, E.; Vrakas, D.; Vezinias, P.; Vlahavas, I. An Intelligent Modular Water Monitoring IoT System for Real-Time Quantitative and Qualitative Measurements. Sustainability 2023, 15, 2127. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Karimzadeh, Z.; Ebrahimi, G.; Hasanzadeh, M.; Ezzati Nazhad Dolatabadi, J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit. Rev. Anal. Chem. 2022, 52, 1818–1845. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Yan, W.; Guo, Y.; Shuang, S.; Dong, C.; Bi, Y. Design of a facile and label-free electrochemical aptasensor for detection of atrazine. Talanta 2019, 201, 156–164. [Google Scholar] [CrossRef]
- Li, L.; Xu, S.; Li, X.; Gao, H.; Yang, L.; Jiang, C. Design of microfluidic fluorescent sensor arrays for real-time and synchronously visualized detection of multi-component heavy metal ions. Chem. Eng. J. 2024, 493, 152636. [Google Scholar] [CrossRef]
- Aryal, P.; Hefner, C.; Martinez, B.; Henry, C.S. Microfluidics in environmental analysis: Advancements, challenges, and future prospects for rapid and efficient monitoring. Lab A Chip 2024, 24, 1175–1206. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Giwa, A. Advances in real-time water quality monitoring using triboelectric nanosensors. J. Mater. Chem. A 2025, 13, 11134–11158. [Google Scholar] [CrossRef]
- Das, H.K.; Choudhury, S.; Sabharwal, U. Nanobiosensors in the Prediction of Environmental Pollutants: Recent Advances and Challenges. In Plant-Microbe Interaction Under Xenobiotic Exposure; Roy, S., Mandal, V., Eds.; Springer Nature: Singapore, 2025; pp. 611–625. [Google Scholar] [CrossRef]
- Chauhan, N.; Sah, N.; Saxena, K.; Jain, U. A review on biosensor approaches for the detection of hazardous elements in water. Talanta Open 2025, 12, 100536. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Zhang, Y.; Yang, X.; Guo, L.; Man, C.; Jiang, Y.; Zhang, W.; Zhang, X. Emerging biosensors integrated with microfluidic devices: A promising analytical tool for on-site detection of mycotoxins. npj Sci. Food 2025, 9, 84. [Google Scholar] [CrossRef]
- Teixeira, S.C.; Gomes, N.O.; Calegaro, M.L.; Machado, S.A.S.; de Oliveira, T.V.; de Fátima Ferreira Soares, N.; Raymundo-Pereira, P.A. Sustainable plant-wearable sensors for on-site, rapid decentralized detection of pesticides toward precision agriculture and food safety. Biomater. Adv. 2023, 155, 213676. [Google Scholar] [CrossRef]
- Fathoni, M.; Zaki, A.; Razak, F. Ultra-Sensitive Quantum Sensor for Detection of Pollutants in Water. J. Tecnol. Quantica 2024, 1, 135–145. [Google Scholar]
- EPA, U.S. Nutrient Sensor Action Challenge—Stage I Winners. Available online: https://www.epa.gov/innovation/nutrient-sensor-action-challenge-stage-i-winners (accessed on 15 July 2025).
- Frincu, R.M. Artificial intelligence in water quality monitoring: A review of water quality assessment applications. Water Qual. Res. J. 2024, 60, 164–176. [Google Scholar] [CrossRef]
- Hamzah, A.; Aqlan, F.; Baidya, S. Drone-based digital twins for water quality monitoring: A systematic review. Digit. Twins Appl. 2024, 1, 131–160. [Google Scholar] [CrossRef]
- Wu, X.; Lu, G.; Wu, Z. Remote sensing technology in the construction of digital twin basins: Applications and prospects. Water 2023, 15, 2040. [Google Scholar] [CrossRef]
- Dui, H.; Cao, T.; Wang, F. Digital twin-based resilience evaluation and intelligent strategies of smart urban water distribution networks for emergency management. Resilient Cities Struct. 2025, 4, 41–52. [Google Scholar] [CrossRef]
- Sundaresan, S.; Kumar, K.S.; Kumar, T.A.; Ashok, V.; Julie, E.G. Blockchain architecture for intelligent water management system in smart cities. In Blockchain for Smart Cities; Elsevier: Amsterdam, The Netherlands, 2021; pp. 57–80. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Li, L.; Ning, R.; Yu, S.; Gao, N. Application of remote sensing technology in water quality monitoring: From traditional approaches to artificial intelligence. Water Res. 2024, 267, 122546. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Li, X.; Huang, Y.; Zhang, L.; Zhu, Z.; Sun, X.; Lan, Z.; Guo, W. Hyperspectral remote sensing technology for water quality monitoring: Knowledge graph analysis and Frontier trend. Front. Environ. Sci. 2023, 11, 1133325. [Google Scholar] [CrossRef]
- Zeng, H.; Dhiman, G.; Sharma, A.; Sharma, A.; Tselykh, A. An IoT and Blockchain-based approach for the smart water management system in agriculture. Expert Syst. 2023, 40, e12892. [Google Scholar] [CrossRef]


| Type | Examples | Sources | Associated Risks |
|---|---|---|---|
| Inorganic ECs | Heavy metals/metalloids: Pb, Hg, Cd, As, Co, Cr Radionuclides: U, Cs | Mining and smelting. Coal and waste combustion. Metal refining and electronics manufacturing. Nanomaterials and battery production. Nuclear power plants and medical-waste disposal. | Neurotoxicity and developmental impairment. Renal/hepatic damage. Bioaccumulation in food webs. Carcinogenic and mutagenic effects. Radiological hazards. |
| Organic ECs | Pharmaceuticals: antibiotics, hormones, analgesics Personal care products: parabens, UV filters (oxybenzone) Pesticides: glyphosate, atrazine, neonicotinoids Flame retardants: PBDEs Plasticizers: phthalates PCBs | Agricultural runoff and livestock operations. Industrial discharges from chemical plants. Wastewater-treatment effluent. Landfill leachate. Product residues. | Endocrine disruption (reproductive and developmental effects). Chronic immune and neurological toxicity. Carcinogenic and teratogenic outcomes. Bioaccumulation and promotion of ARB. |
| Biological ECs | Pathogenic bacteria and viruses: E. coli O157:H7, Salmonella spp., norovirus and adenovirus ARB and genes: MRSA, ESBL-E. coli Cyanobacterial toxins: microcystins | Hospital waste streams. Untreated or poorly treated sewage. Manure-amended soils and runoff. Surface-water algal blooms. | Infectious-disease outbreaks and spread of multidrug resistance. Acute liver/kidney poisoning and gastrointestinal illness. Disruption of aquatic and soil microbial communities. |
| Other ECs | Microplastics and nanoplastics: PE, PP, PS particles, textile fibers PFAS: PFOA, PFOS, GenX Engineered nanomaterials: CNTs, CNFs, metal oxides | Fragmentation of plastic waste. Abrasion of synthetic textiles and tires. Microbeads in cosmetics. Firefighting foams. Industrial coating and plating processes. | Physical injury and false satiation in wildlife. Vectors for adsorbed pollutants. Endocrine and immune toxicity. Cytotoxicity, oxidative stress, and membrane damage from nanomaterials. Persistent environmental contamination. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.; Bhat, A.; Thenuwara, G.; Ravi, K.; Naik, A.S.; O’Connor, C.; Tian, F. Hidden Threats in Water: The Global Rise of Emerging Contaminants. Pollutants 2025, 5, 48. https://doi.org/10.3390/pollutants5040048
Singh B, Bhat A, Thenuwara G, Ravi K, Naik AS, O’Connor C, Tian F. Hidden Threats in Water: The Global Rise of Emerging Contaminants. Pollutants. 2025; 5(4):48. https://doi.org/10.3390/pollutants5040048
Chicago/Turabian StyleSingh, Baljit, Abhijnan Bhat, Gayathree Thenuwara, Kamna Ravi, Azza Silotry Naik, Christine O’Connor, and Furong Tian. 2025. "Hidden Threats in Water: The Global Rise of Emerging Contaminants" Pollutants 5, no. 4: 48. https://doi.org/10.3390/pollutants5040048
APA StyleSingh, B., Bhat, A., Thenuwara, G., Ravi, K., Naik, A. S., O’Connor, C., & Tian, F. (2025). Hidden Threats in Water: The Global Rise of Emerging Contaminants. Pollutants, 5(4), 48. https://doi.org/10.3390/pollutants5040048

