Positioning of a Lunar Lander Using a Dedicated Lunar Communication and Navigation System Assuming Realistic ODTS Performances †
Abstract
1. Introduction
2. LCNS and Lander User Case
2.1. Lunar Communication and Navigation System (LCNS)
2.1.1. Constellation
2.1.2. Navigation Payload
2.2. Lander
2.2.1. Lander Dynamic
2.2.2. Lander Payload
3. Simulation
3.1. Software Architecture
3.2. Orbit Determination and Time Synchronisation
- The gravitational mono-pole accelerations associated with the Earth, the Moon and the Solar System planets;
- The spherical harmonics of the Moon, up to degree and order 120;
- The spherical harmonics of the Earth, up to degree 2;
- The non-gravitational acceleration due to the solar radiation pressure (SRP) acting on the satellites.
- t1: epoch of the signal of transmission from ground.
- t2: epoch of the signal of reception onboard.
- t3: epoch of the signal reception on ground.
3.3. Navigation Filter
3.3.1. Extended Kalman Filter
3.3.2. Altimeter
4. Results
4.1. Precision Landing with LCNS
4.2. Precision Landing with LCNS Aided by an Altimeter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPSK | Binary Phase Shift Key |
EKF | Extended Kalman Filter |
ELFO | elliptical lunar frozen orbit |
ESA | European Space Agency |
GNSS | Global Navigation Satellite System |
IMU | Inertial Measurement Unit |
ISECG | International Space Exploration Coordination Group |
LCNS | lunar communication and navigation system |
MSPA | Multiple Spacecraft Per Aperture |
OCXO | Oven-Controlled Chrystal Oscillator |
ODTS | Orbit Determination and Time Synchronisation |
RAAN | right ascension of the ascending node |
SBI | Single-Beam Interferometry |
SISA | Signal-In-Space Accuracy |
SISE | Signal-In-Space Error |
SRP | solar radiation pressure |
References
- Artemis II Science Definition Team Report, NASA, Washington D.C., USA. 2020. Available online: https://www.nasa.gov/sites/default/files/atoms/files/artemis-iii-science-definition-report-12042020c.pdf (accessed on 25 August 2025).
- Global Governmental Space Exploration Investments to Reach $31B by 2031 as Public and Private Players Reach for the Moon; Euroconsult: Paris, France, 2022.
- Murata, M.; Kawano, I.; Kogure, S. Lunar Navigation Satellite System and Positioning Accuracy Evaluation. In Proceedings of the International Technical Meeting of The Institute of Navigation, ITM, Long Beach, CA, USA, 27–30 January 2022; pp. 582–586. [Google Scholar]
- Moonlight Programme, European Space Agency: Paris, France. 2022. Available online: https://esamultimedia.esa.int/docs/telecom/22.09.26_Moonlight_White_Paper.pdf (accessed on 25 August 2025).
- Draft LunaNet Interoperability Specifications; Technical report; NASA: Washington, DC, USA, 2022. Available online: https://esc.gsfc.nasa.gov/static-files/Draft%20LunaNet%20Interoperability%20Specification%20Final.pdf (accessed on 21 June 2022).
- LunaNet: Empowering Artemis with Communications and Navigation Interoperability; NASA: Washington, DC, USA, 2021. Available online: https://www.nasa.gov/feature/goddard/2021/lunanet-empowering-artemis-with-communications-and-navigation-interoperability (accessed on 25 August 2025).
- Takahashi, N.; Lee, M.; Grush, L. Japan Spacecraft Believed to Have Crashed on Moon During Landing; Bloomberg: New York, NY, USA, 2023. [Google Scholar]
- Communication and Positioning, Navigation, and Timing Frequency Allocations and Sharing in the Lunar Region (32-2R6), Space Frequency Coordination Group. 2022. Available online: https://www.nasalsmp.org/SitePages/Recommended-Frequency-Bands.aspx (accessed on 25 August 2025).
- Schier, J.; Sham, C.; Lee, D.; Abhyankar, K.; Clothier, K. International coordination and cooperation on LunaNet spectrum. In Proceedings of the 29th Ka and Broadband Communications Conference, Seattle, WA, USA,, 24–27 September 2024. [Google Scholar]
- SAFRAN Electronics and Defense MINIRAFS RB Atomic Frequency Standard, Paris, France. 2021. Available online: https://safran-navigation-timing.com/product/minirafs-rb-atomic-frequency-standard/?model_interest__c=MiniRAFS&product_interest___single_select=Atomic+Clocks+and+Oscillators (accessed on 25 August 2025).
- De Marchi, F.; Plumaris, M.; Burt, A.E.; Iess, L. A quick algorithm to compute an approximated power spectral density from an arbitrary Allan Deviation. arXiv 2023, arXiv:2311.00598. [Google Scholar] [CrossRef]
- ESA. What Is Argonaut; European Space Agency: Paris, France, 2024; Available online: https://www.esa.int/ESA_Multimedia/Images/2020/10/What_is_Argonaut (accessed on 2 May 2023).
- AXTAL GmbH. AXIOM70SL: Ultra-Low Phase Noise 10 MHz OCXO with HCMOS Output for Space Application (Space COTS Version). 2022. Available online: https://www.axtal.com/cms/docs/doc124949.pdf (accessed on 14 June 2022).
- ESA. GODOT Documentation; European Space Agency: Paris, France, 2022; Available online: https://godot.io.esa.int (accessed on 26 June 2023).
- Gregnanin, M.; Bertotti, B.; Chersich, M.; Fermi, M.; Iess, L.; Simone, L.; Tortora, P.; Williams, J. Same beam interferometry as a tool for the investigation of the lunar interior. Planet. Space Sci. 2012, 74, 194–201. [Google Scholar] [CrossRef]
- Tapley, B.; Schutz, B.; Born, G. Statistical Orbit Determination; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Di Benedetto, M.; Boscagli, G.; De Marchi, F.; Durante, D.; Santi, F.; Sesta, A.; Plumaris, M.; Fienga, A.; Linty, N.; Sośnica, K.; et al. An architecture for a lunar navigation system: Orbit determination and time synchronization. In Proceedings of the 8th International ESA Colloquium on Scientific and Fundamental Aspects of GNSS, Sofia, Bulgaria, 14–16 September 2022. [Google Scholar]
- Audet, Y.; Melman, F.; Molli, S.; Sesta, A.; Plumaris, M.; Psychas, D.; Swinden, R.; Giordano, P.; Ventura-Traveset, J. Positioning of a Lunar Surface Rover on the South Pole Using LCNS and DEMs. Adv. Space Res. 2024, Under Review. [Google Scholar] [CrossRef]
- Kaplan, E.D.; Hegarty C., J. Understanding GPS/GNSS Principles and Applications; GNSS Technology and Applications Series; Artech House: Boston, MA, USA, 2017. [Google Scholar]
- Molli, S.; Tartaglia, P.; Audet, Y.; Sesta, A.; Plumaris, M.; Melman, F.; Swinden, R.; Giordano, P.; Ventura-Traveset, J. Navigation performance of Low Lunar Orbit satellites using a Lunar Radio Navigation Satellite System. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 11–15 September 2023. [Google Scholar] [CrossRef]
- Grenier, A.; Giordano, P.; Bucci, L.; Cropp, A.; Zoccarato, P.; Swinden, R.; Ventura-Traveset, J. Positioning and Velocity Performance Levels for a Lunar Lander using a Dedicated Lunar Communication and Navigation System. Navig. J. Inst. Navig. 2022, 69, navi.513. [Google Scholar] [CrossRef]
- ISECG. Global Exploration Roadmap Critical Technology Needs. Available online: https://www.globalspaceexploration.org/wp-content/uploads/2019/12/2019_GER_Technologies_Portfolio_ver.IR-2019.12.13.pdf (accessed on 13 June 2023).
- Parker, J.J.K.; Dovis, F.; Anderson, B.; Ansalone, L.; Ashman, B.; Bauer, F.H.; D’Amore, G.; Facchinetti, C.; Fantinato, S.; Impresario, G.; et al. The Lunar GNSS Receiver Experiment (LuGRE). In Proceedings of the International Technical Meeting of The Institute of Navigation, ITM, Institute of Navigation, Long Beach, CA, USA, 25–27 January 2022; pp. 420–437. [Google Scholar] [CrossRef]
Satellite ID | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Semi-Major Axis (km) | 9750.73 | 9750.73 | 9750.73 | 9750.73 |
Eccentricity | 0.6383 | 0.6383 | 0.6383 | 0.6383 |
Inclination (°) | 54.33 | 54.33 | 61.96 | 61.96 |
Argument of Pericentre (°) | 55.18 | 55.18 | 121.7 | 121.7 |
RAAN (°) | 277.53 | 277.53 | 59.27 | 59.27 |
True Anomaly (°) | 123.42 | 0 | 180 | 0 |
Element | Parameter | Value |
---|---|---|
Signal Carrier | Carrier Frequency () | 2491.005 MHz |
Carrier Wavelength () | 12.04 cm | |
Signal Modulation | Used Modulation | BPSK(5) |
Chip Length () | 58.61 m |
Allan Deviation Interval (s) | 1 | 10 | 100 | 1000 | 86,400 |
Allan Deviation (s) |
SISA position (3) | 7 m |
SISA velocity (3) | 0.9 mm/s |
SISA clock (3) | 3 m |
SISA clock drift (3) | 0.012 Hz |
Mean Error | 95th Perc. | 99th Perc. | |
---|---|---|---|
3D position error | 28.86 m | 41.13 m | 46.86 m |
Mean Error | 95th Perc. | 99th Perc. | |
---|---|---|---|
3D position error | 14.86 m | 31.72 m | 42.92 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Audet, Y.; Melman, F.T.; Psychas, D.V.; Swinden, R.D.; Ventura-Traveset, J. Positioning of a Lunar Lander Using a Dedicated Lunar Communication and Navigation System Assuming Realistic ODTS Performances. Eng. Proc. 2025, 88, 74. https://doi.org/10.3390/engproc2025088074
Audet Y, Melman FT, Psychas DV, Swinden RD, Ventura-Traveset J. Positioning of a Lunar Lander Using a Dedicated Lunar Communication and Navigation System Assuming Realistic ODTS Performances. Engineering Proceedings. 2025; 88(1):74. https://doi.org/10.3390/engproc2025088074
Chicago/Turabian StyleAudet, Yoann, Floor T. Melman, Dimitrios V. Psychas, Richard D. Swinden, and Javier Ventura-Traveset. 2025. "Positioning of a Lunar Lander Using a Dedicated Lunar Communication and Navigation System Assuming Realistic ODTS Performances" Engineering Proceedings 88, no. 1: 74. https://doi.org/10.3390/engproc2025088074
APA StyleAudet, Y., Melman, F. T., Psychas, D. V., Swinden, R. D., & Ventura-Traveset, J. (2025). Positioning of a Lunar Lander Using a Dedicated Lunar Communication and Navigation System Assuming Realistic ODTS Performances. Engineering Proceedings, 88(1), 74. https://doi.org/10.3390/engproc2025088074