You are currently viewing a new version of our website. To view the old version click .
Engineering Proceedings
  • Abstract
  • Open Access

19 May 2021

Enriching Low-Density Terrain Maps from Satellite with Autonomous Robots Data †

,
,
and
Automatic Control Department, Technical University of Catalonia, 08034 Barcelona, Spain
*
Author to whom correspondence should be addressed.
Presented at the 8th International Symposium on Sensor Science, 17–28 May 2021; Available online: https://i3s2021dresden.sciforum.net/.
This article belongs to the Proceedings The 8th International Symposium on Sensor Science

Abstract

Satellite imagery and remote sensoring have been used for some years in agriculture to create terrain maps for different soil features (humidity, vegetation index, etc.). Multichannel information provides lots of data, but with a big drawback: the low density of information per surface unit; that is, the multi-channeled pixels correspond to a large surface, and a fine characterization of the targeted areas is not possible. In this research, the authors propose the enrichment of such data by the use of autonomous robots that explore and sense the same targeted area of the satellite but yielding a finer detail of terrain, complementing and fusing both information sources. The sensory elements of the autonomous robots are in the visual spectrum as well as in the near-infrared spectrum, together with Lidar and radar information. This enrichment will provide a high-density map of the soil to the final user to improve crops, irrigation, seeding and other agricultural processes. The methodology to fuse data and create high-density maps will be deep learning techniques. The system will be validated in real fields with the use of real sensors to measure the data given by satellites and robots’ sensors.

Institutional Review Board Statement

Not applicable.

Data Availability

Not applicable.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.